

Soil Care -Reducing Soil Compaction

- Seamus Donnelly, BSc Hons Soil Science
- SAC/SRUC Senior Consultant, Stranraer

Stranraer Rainfall Figures

17 year average annual rainfall = **47**"

June 2017 – January 2018 = 47"

8 consecutive months of almost 6" rain per month

	Annual	June - October	
2002	57"	20"	
2012	53"	27"	Ì
2014	56"	16"	ale -
2017	56"	29″	

Deciding the real problem

The European Agricultural Fund for Rural Development Europe investing in rural areas

What causes compaction?

• Soil compaction is...

the consolidation of soil particles as a result of animal or vehicular traffic.

Restrict movement of water/air/nutrients

Prevents good root development

Impedes Drainage

Increases release of Nitrous Oxide

Reduced Nutrient efficiency

Impact of soil compaction

Poor plant growth Lower Yields Poorer Utilisation of fertiliser Increased runoff and ponding Increased anaerobic conditions Increased soil erosion More greenhouse gas emissions

Which soils are at risk

WET SOILS High Clay content Peaty Poor soil structure Low Crop cover Heavy Stocked Heavy Trafficking

Identifying compaction

• Use a spade to dig a hole at least 30 cm deep

Examine for:

- Blocky platy vs crumb structure
- Horizontal layers (hard pan)
- Poor root penetration and roots running horizontally
- Lower earthworm populations
- Grey mottling

Soil structure

Structure is the how the particles bind together to form aggregates that allows:

- roots to anchor the plant ۲
- water to drain through pores and cracks
- water retention
- air to roots for favorable gas exchange ۲
- mineralisation of nutrients and release to • crop roots
- biodiversity of microbes •

Aggregation

- A grouping of particles joined together or a grouping of aggregates (from pinhead to hand size)
- Joining is by 'glues' of clay and organic matter and binding by roots and fungal hyphae_{soil particles}

Individual particles

Particles aggregate to form a ped

Peds stacked

Pedsstacked aroundeach other to form soil structure

Visual Evaluation of Soil Structure (VESS)

What is needed?

- A Spade!
- Show if aeration or sub-soiling is needed and how successful it has been
- Monitor soil health take photographs
- Areas of field with suspected compaction
- Topsoil assessed with spade
- Subsoil and topsoil assessed by digging pits

Structure quality	Size and appearance of aggregates	Visible porosity and Roots	Appearance after break-up: various soils	Appearance after break-up: same soil different tillage	Distinguishing feature	Appearance and description of natural or reduced fragment of ~ 1.5 cm diameter		1
Sq1 Friable Aggregates readily crumble with fingers	Mostly < 6 mm after crumbling	Highly porous Roots throughout the soil			Fine aggregates	Ĩ	The action of breaking the block is enough to reveal them. Large aggregates are composed of smaller ones, held by roots.	3 4 5
Sq2 Intact Aggregates easy to break with one hand	A mixture of porous, rounded aggregates from 2mm - 7 cm. No clods present	Most aggregates are porous Roots throughout the soil			High aggregate porosity	<u>=</u>	Aggregates when obtained are rounded, very fragile, crumble very easily and are highly porous.	
Sq3 Firm Most aggregates break with one hand	A mixture of porous aggregates from 2mm -10 cm; less than 30% are <1 cm. Some angular, non- porous aggregates (clods) may be present	Macropores and cracks present. Porosity and roots both within aggregates.			Low aggregate porosity	t cm	Aggregate fragments are fairly easy to obtain. They have few visible pores and are rounded. Roots usually grow through the aggregates.	10
Sq4 Compact Requires considerable effort to break aggregates with one hand	Mostly large > 10 cm and sub-angular non-porous; horizontal/platy also possible; less than 30% are <7 cm	Few macropores and cracks All roots are clustered in macropores and around aggregates			Distinct macropores	٤.	Aggregate fragments are easy to obtain when soil is wet, in cube shapes which are very sharp- edged and show cracks internally.	15
Sq5 Very compact Difficult to break up	Mostly large > 10 cm, very few < 7 cm, angular and non- porous	Very low porosity. Macropores may be present. May contain anaerobic zones. Few roots, if any, and restricted to cracks			Grey-blue colour		Aggregate fragments are easy to obtain when soil is wet, although considerable force may be needed. No pores or cracks are visible usually.	с.
								20

Good Soil Structure (Sq1)

Good but larger aggregates (Sq2)

The European Agricultural Fund for Rural Development Europe investing in rural areas

Signs of compaction (Sq3)

The European Agricultural Fund for Rural Development Europe investing in rural areas

Compaction Issues (Sq4)

The European Agricultural Fund for Rural Development Europe investing in rural areas

FARM

ADVISORY

SERVICE

5

Management from VESS scores

Threshold Sq values for sustained agricultural productivity

Sq score	Soil structural quality	Management needs
1-2	Good	No changes needed
3	Fair	Long-term improvements
4-5	Poor	Short-term improvements
**** *** ***		Scottish Governmen Riaghaltas na h-Albo gov.scot

Types of compaction

Animal trampling effect the upper layer of the soil (0-10cm).

What does the most damage?

Tractor vs Sheep vs Cattle

Tractor	Sheep	Cattle			
12 psi	Standing 12 psi	Standing 25 psi			
12 psi	Walking 29 psi	Walking 55 psi			

Compaction by livestock

At or near Surface—usually less than 4". Affected by:

- Mass of Animal
- Stocking Density
- Rate of Rotation
- Sward Type
- Local Issues e.g. troughs / shelters / gates

What is he trying to do?!

The European Agricultural Fund for Rural Development Europe investing in rural areas

Compaction by farm vehicles

Impacts on surface and subsurface Affected by:

- Total axel weight
- Tyre width/diameter & type
- Inflation Pressure
- Wheel Slip
- Number of Passes
- Moisture content of the soil

The wetter the soil, the greater SR ADVISORY SERVICE

Tyre size: 11 - 28 Load: 1650 LBS Inflation Pressure: 12 PSI 0 MANUS IIIS TISTISTISTISTI Iste Sta 120 16 4 8 6 12 .6 16 3 20 PSI 24 Depth in inches 28 Hard dry soil Normal Wet soil Scottish Government Riaghaltas na h-Alba gov.scot

The European Agricultural Fund for Rural Development Europe investing in rural areas

Increase the footprint, reduce the compaction

The European Agricultural Fund for Rural Development Europe investing in rural areas

Grassland Soil Compaction: Effects on Yield and Nitrous Oxide Emissions

 Paul Hargreaves, Bruce Ball and Dave Roberts, SRUC

DairyCo Compaction Experiment

The compaction experiment has three main treatments:

- Trampling
- Mechanical load
- No compaction

These treatments are related to measurements of grass yield and nitrous oxide (N₂O) emissions.

Sub-treatments

- Surface aeration
- Sward lifting (~20cm)
- Nitrification inhibitor

Two states – Crichton (Scotland) and Harper Adams (English Government

Compaction Treatments

Heifers (12) trampled area for 1 hour on two separate occasions – one week apart.

Weighted tractor (10,200kg). Driven over the area once on two separate occasions - one week apart.

Compaction Treatment Effects

Control

Soil After Compaction Treatments

Compaction Results – 1st Silage Cut

2013

Soil After Compaction Treatments

Europe investing in rural areas

Bulk Density (g cm³)
(soil depth 0-10cm)
October 2011October 2011October 2014SRUC 1.021.15

SRUC 1.02 1.23

SRUC 1.02

0.94

	SRUC				Harper Adams			
	Yield Reduction (t/ha)		Percent reduction (%)		Yield Reduction (t/ha)		Percent reduction (%)	
	Trampled	Tractor	Trampled	Tractor	Trampled	Tractor	Trampled	Tractor
2012	0.6	0.3	6.5	1.0	0.6	0.1	6.2	1.8
2013	0.4	1.0	5.6	11.5	0.2	0.6	1.9	-5.1
2014	1.6	2.0	11.0	14.3	2.0	2.3	12.2	14.3
All Years	2.6	3.3			2.8	3.0		

Compaction and Nitrogen use

Figure 8.3: The relationship between the amount of nitrogen applied and crop yield under different compaction regimes. A compacted soil (bulk density of 1.55 Mg/m³) may require more nitrogen to obtain a similar yield to a non-compacted soil (bulk density of 1.30 Mg/m³). From Soane and Vanouwerkerk (1995)

Prevention is better than cure

Stay off wet soils

Sort drainage issues

Know where your driest grazing fields are

Wetter fields -- rest/graze with sheep/youngstock

Outwintering – when do you bring cattle in ?

Prevention is better than cure

Reduce weight

Minimise loads, remove weights Light machines, more axles

Reduce ground pressure

Wider tyres, low inflation pressure Tandom or Dual wheels, Tracked vehicles Specialised low ground pressure machines

Sacrifice yield for timeliness

Choose crops to suit your soil type

Avoid uphill operations

Use Tracks/End-riggs/Tramlines

Gates at bottom of field ?

Spread the Load

Sorting compaction problems

Must use: **Bight tr**

Right treatment at the Right depth at the RIGHT time

or else – WASTE OF TIME & FUEL

- Spike /Aerator
- Flat-Lifter
- Plough
- Subsoiler
- Mole Plough

Remediation and working depths

(Critical Depth 6x Leading tine width)

Туре	Typical working depth (cm)	
Aerators i.e. spiking or slitting	0 – 15cm	Sward Liffte
Sward Lifters	15 -35cm	
Sub-soilers	35 – 50cm	

Soil aerators

Sward Lifter

Flat lifter

The European Agricultural Fund for Rural Development Europe investing in rural areas

Riaghaltas na h-Alba gov.scot

Loosening a compaction pan with a sward lifter (adapted from NSRI, 2002).

Note: the working depth has to be just below the zone that needs to be broken up.

The European Agricultural Fund for Rural Development Europe investing in rural areas

Flat lifters / mini subsoilers

The European Agricultural Fund for Rural Development Europe investing in rural areas

Remediation of severe wheel rutting

- Make fissures across the ruts
- Allows water to drain into the adjacent uncompacted soil

www.mascus.com

Subsoiler

Subsoiler tine

The European Agricultural Fund for Rural Development Europe investing in rural areas

Subsoilers open up the soil

Subsoil shatter

Subsoilers break up pans

- Only when necessary check the subsoil for compaction
- When the subsoil is brittle i.e. not too dry or too wet
- Post Harvest subsoiling is usually best in terms of land access and soil suitability (but not in 2007 or 2008 or 2012)

- Set the subsoiler below the compact layer if possible or around 16-18"
- Subsoil across the field drains
- Subsoiler should be at least 10cm above the drains
- Check to see if the operation has worked after the first pass
- Use shallow leading tines with the subsoiler
 - if soil above is too compact then shatter

does not happen and the result is an inferior 'mole' drame

Moling – secondary drainage

The European Agricultural Fund for Rural Development Europe investing in rural areas

- Very closely spaced drains are uneconomic
- Use short lived mole drains to connect permanent drains
- The mole plough has to pass through the permeable fill
- At least 35% clay in the soil and must be **Stone Free**
- The soil should be <u>plastic</u> when the mole is pulled

Beam mole plough

Mole plough

Soil aerators

Sward lifter

Flat lifter

The European Agricultural Fund for Rural Development Europe investing in rural areas

Scottish Government Riaghaltas na h-Alba gov.scot

Loosening a compaction pan with a sward lifter (adapted from NSRI, 2002).

Note: the working depth has to be just below the zone that needs to be broken up.

The European Agricultural Fund for Rural Development Europe investing in rural areas

Flat lifters / mini subsoilers

The European Agricultural Fund for Rural Development Europe investing in rural areas

Remediation of severe wheel rutting

- Make fissures across the ruts
- Allows water to drain into the adjacent uncompacted soil

www.mascus.com

Subsoiler

Subsoiler tine

Subsoilers open up the soil

Subsoil shatter

Subsoilers break up pans

- Only when necessary check the subsoil for compaction
- When the subsoil is brittle i.e. not too dry or too wet
- Post Harvest subsoiling is usually best in terms of land access and soil suitability (but not in 2007 or 2008 or 2012)

- Set the subsoiler below the compact layer if possible or around 16-18"
- Subsoil across the field drains
- Subsoiler should be at least 10cm above the drains
- Check to see if the operation has worked after the first pass
- Use shallow leading tines with the subsoiler
 - if soil above is too compact then shatter does not happen and the result is an inferior 'mole' drain

Moling – secondary drainage

The European Agricultural Fund for Rural Development Europe investing in rural areas

- Very closely spaced drains are uneconomic
- Use short lived mole drains to connect permanent drains
- The mole plough has to pass through the permeable fill
- At least 35% clay in the soil and must be **Stone Free**
- The soil should be <u>plastic</u> when the mole is pulled

Beam mole plough

The European Agricultural Fund for Rural Development Europe investing in rural areas

Mole plough

Take home messages

Wetting/drying and frosts may remedy surface compaction Don't assume compaction is the problem (dig a hole) Avoid working when soil is too wet
Machinery can alleviate compaction in the topsoil and subsoil Spiking/aerating can disrupt shallow pan (variable response) Soil loosening – only recommended where compaction is evident Soil loosening – not a substitute for field drainage Soil should be dry to working depth Best time is autumn but not always Only loosen as deep as required (not below an implement's critical depth) Don't run a soil loosener too deep Loosened soils can be easily re-compacted

Ensure future compaction is avoided

