

Nutrient Network Farm and manure

Alex Sinclair

SAC Consulting is a division of SRUC

Leading the way in Agriculture and Rural Research, Education and Consulting

Typical NPK contents of cattle FYM with 25% DM (TN650, Table C)

FYM type	Dry matter %	ryTotal NReadilyitterkg/tavailable%N kg/t		Total P ₂ O ₅ kg/t	Total K ₂ O kg/t	
Fresh	25	6.0	1.2	3.2	8.0	
Old	25 6.0		0.6	3.2	8.0	

FYM and slurry analysis expressed as kg nutrient per tonne or cubic metre

Major nutrients NPK:

- Value = % in fresh material
- Value x 10 = Kg per tonne or cubic metre
- Secondary nutrients Ca, Mg and Na
 - Value = % in dry matter (DM)
 - Value x DM/100 x 10 = Kg per tonne or cubic metre
- Trace elements Zn, Cu, Mn and S
 - Value = mg/kgDM
 - (Value x DM/100)/1000 = Kg per tonne or cubic metre

NPK contents of FYM from East Balhalgardy

FYM type	Dry matter %	Total N kg/t	Readily available N kg/t	Total P ₂ O ₅ kg/t	Total K ₂ O kg/t
Fresh	21.7	3.7	0.19	1.2	8.1
Midden	17.5	5.0	0.04	4.3	7.2

% of total N available to next crop following application of cattle FYM (TN650, Table E)

FYM type	Incorporation time	Aug-Oct	Aug-Oct	Nov- Jan	Feb- April
		Shallow, S & SL	All other soils	All soils	All soils
Fresh & old	Over 24hr	5	10	10	10
Fresh	Within 24hr	5	10	10	15
Old	Within 24hr	5	10	10	10

- The availability of phosphate in organic fertilisers to the next crop grown is 50-60% of total P and is lower than from watersoluble P fertilisers.
- About 90% of potash in organic fertilisers is readily available for plant uptake.

Inherent soil P sorption capacity map of Scotland (TN668, 2015)

FYM analysis for secondary and trace elements

Determ	ination aqua regia	Fresh (%)	Fresh (kg/t)	Midden (%)	Midden (kg/t)
DM (%)		21.7		17.5	
Calcium	(%DM)	0.603	3.27	2.26	3.96
Magnesiu	m (%DM)	0.18	0.98	0.71	1.24
Sodium	(%DM)	0.2	1.09	0.85	1.49
Zinc	(mg/kgDM)	62.1	0.013	240	0.042
Copper	(mg/kgDM)	29	0.006	92.3	0.016
Manganes	se (mg/kgDM)	123	0.027	495	0.087
Sulphur	(mg/kgDM)	2400	0.521	5510	0.964

Sulphur availability from organic materials (RB209, 2017)

Organic material	% total SO ₃ available
Autumn applied	
Livestock manures	5-10%
Biosolids	10-20%
Spring applied	
Cattle FYM	15%
Pig FYM	25%
Broiler litter	60%
Cattle/pig slurry	35%
Biosolids	20%

NPK contents of slurry from East Balhalgardy

Slurry sample	Dry matter %	Total N kg/t	Readily available N kg/t	Total P ₂ O ₅ kg/t	Total K ₂ O kg/t
A	3.75	4.6	2.8	1.3	2.2
В	3.14	4.0	2.7	1.3	2.4

Estimated % total N available to cereals (grass & WOSR) following application of cattle slurry with 6%DM (greater % N available in spring for lower DM) (TN650)

Application method	Aug-Oct	Aug-Oct	Nov-Jan	Nov-Jan	Feb- April
	Shallow, S & SL	Other soils	Shallow, S & SL	Other soils	All soils
Incorp over 6 hrs	5 (10)	25 (30)	25	25	35
Band spread	5 (10)	25 (30)	25	25	40
Shallow injected	5 (10)	25 (30)	30	30	45

Minimum slurry & poultry manure utilisation rates allowed in NVZs

Livestock manure	% N taken up by crop (after 01/01/2014)
Cattle slurry	40 %
Pig slurry	50 %
Poultry manure or litter	30 %

- In practice this means that you will not be able to apply as much N (organic or inorganic) on a field spread with slurry in autumn compared with February and spring
- PLANETv3.3.3 includes these new utilisation rates.

Closed period for high available N organic manures in NVZs

	Grassland	Other land			
Sandy or shallow soils	1 st September to 31 st December	1 st August* to 31 st December			
All other soils	15 th October to 31 st January	1 st October to 31 st January			

Slurry analysis for secondary and trace elements

Determ	ination in aqua regia	A (%)	A (kg/m ³)	B (%)	B (kg/m³)
DM (%)		3.75		3.14	
Calcium	(%DM)	2.26	0.85	2.03	0.64
Magnesiu	m (%DM)	0.72	0.27	0.76	0.24
Sodium	(%DM)	0.94	0.35	0.98	0.31
Zinc	(mg/kgDM)	921	0.035	110	0.0035
Copper	(mg/kgDM)	608	0.023	265	0.0083
Manganes	se (mg/kgDM)	361	0.014	267	0.0084
Sulphur	(mg/kgDM)	6630	0.249	6880	0.216

Financial value of tonne of FYM & cubic metre of slurry

FYM/Slurry	Available N*	P ₂ O ₅	K ₂ O	Value £/m3
Midden	0.36	2.67	3.35	6.38
A	1.31	0.81	1.02	3.14

*assumes 10% & 40% of total N in FYM & slurry will be available after spring application – % will be lower from autumn application; assume total P and K will be taken up at some time;

£ value based on AN @ £245/t (71p/kg N); TSP @ £285/t (62p/kg P_2O_5); MoP @ £280/t (46.5p/kg K_2O).

Conversions

- One kg/t = ? Units/t
- 50kg of 34% N contains 34 units N
- How many kg N in 50kg of 34% N?
- Typical rate of FYM (30t/ha = 12t/acre)
- 33 m³/ha = 3,000 gals/acre
- ? gals/acre = 1 m³/ha

P PLANET - Farm and Field Details

File View Tools Library Tutorials Help

👝 🔚 🛛 🕋 🌾 🦺 🛕 🔝 🖉 📾 📼 🐄 🌨 🛛 🙌 🔶 🥐

Farm Details

Farm name: Whitecrook Farm address: Whitecrook Farm Dunragit Stranraer				For the f adjusted used to on the s	ollowing crop if the farm-a adjust the N andard yield) types, the verage yiel max limit. If for the cro	N max calculat d for the crop is you do not ente p type.	on is based on known. If you e r a farm-averag	a standard yie enter a farm-av je yield, the N i	ld but m rerage yi max limit	ay be ield, this will be t will be based	
Postcode: DG9 8PY CPH number: 98/865/0096 Farm STD code: 01581 (New Luce)				If the yie (i) histori be grow (ii) where another previous At least 3	ld adjustmen c yield previo n or a new crop arm within th y achieved l years of sup	it is used it nusly achie managem ne same NV by that crop oporting rec	must be based over for the giver ent system is to l Z with similar so at that other fa cords must be av	on : n crop type on t oe introduced fo ill type and soil rm using that cr vailable to demo	he actual farm or a given crop nutrient status rop manageme onstrate the ac	where t of evider of histo ent syste tual yield	he crop is to nce from ric yields m. ds achieved.	
Field *	Details Field name	Update	to latest rainfall	Ente Barl Barl Oat: Oat:	r or update ey, spring ey, winter , spring winter	5.0	rerage Yield (Clear Clear Clear Clear	t/ha) for the Oilseed rap Whea Whea	following cro e, winter [at, spring] at, winter]	op type	es (optional) Clear Clear Clear	NVZ Action Programm
•	Long Field Milbys Roadside Square Field Milbys Holm		NX/13294/5 NX/13271/5 NX/13165/5 NX/13157/5		Ente	r / Update	Values Cancel	< Back	Next >		Finish	Lower Nithsdale NV2 Lower Nithsdale NV2 Lower Nithsdale NV2 Lower Nithsdale NV2
	Mid Field William Wallace Garden Field Pumphouse Field		NX/13050/57 NX/12985/58 NX/12956/56 NX/12905/57	590 124 930 683		6.40 4.92 4.61 4.96	6. 4. 4. 4.	20 52 20 96		0.20 0.40 0.41 0.60	Sandy loam Sandy loam Sandy loam Sandy loam	Lower Nithsdale NVZ Lower Nithsdale NVZ Lower Nithsdale NVZ Lower Nithsdale NVZ
	Kirminnoch Holm Shore Field		NX/12827/57	385 129		5.49 2.84	5. 2.	49 84		0.79 0.03	Sandy loam Sandy loam	Lower Nithsdale NVZ Not in an NVZ

Nitrogen cycle

Nitrous oxide (N₂O) emissions by Scottish Government sector

1990-2014. Values in MtCO₂e

Managing nitrous oxide by improving efficiencies in N utilisation

- Nitrous oxide is 300x more potent than carbon dioxide in Greenhouse Effect
- Nitrous oxide emissions arise from fertiliser and manure application

Soil moisture and N₂O

Reducing N₂O emissions

Major changes

- Improve drainage
- Make more use of legumes to supplement fertilisers
- Re-locate high N input cropping to drier areas
- Reduce intensity of animal production (only works if there is less consumption)
- Use alternative N fertilisers/ inhibitors

Minor changes

- Reduce fertiliser N inputs generally, but particularly in "hotspots"
- Target mitigation at short periods of high emission
- Use of medium to long term weather forecasts to plan fertiliser applications
- Careful management of manures e.g. composting, straw based systems rather than slurry, apply to arable rather than to grass