

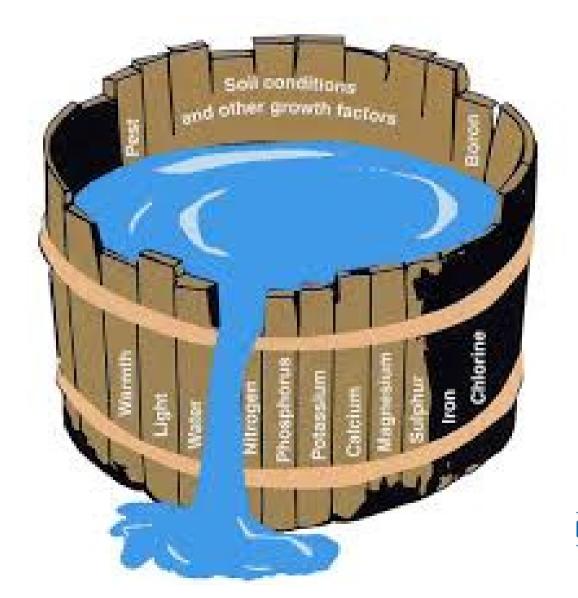
Maximising the use of GPS Soil sampling on a mixed farm

David Ross Senior Consultant, SAC Consulting

Topics for today

- The importance of pH
- The importance of P, K and S
- The differences in sampling systems
- Results from the fields tested at Limekilns
- What factors do you need to think about?
- Recommendations for lime/fert/FYM?slurry
- What's the benefit?

...and the sun sometimes shines!



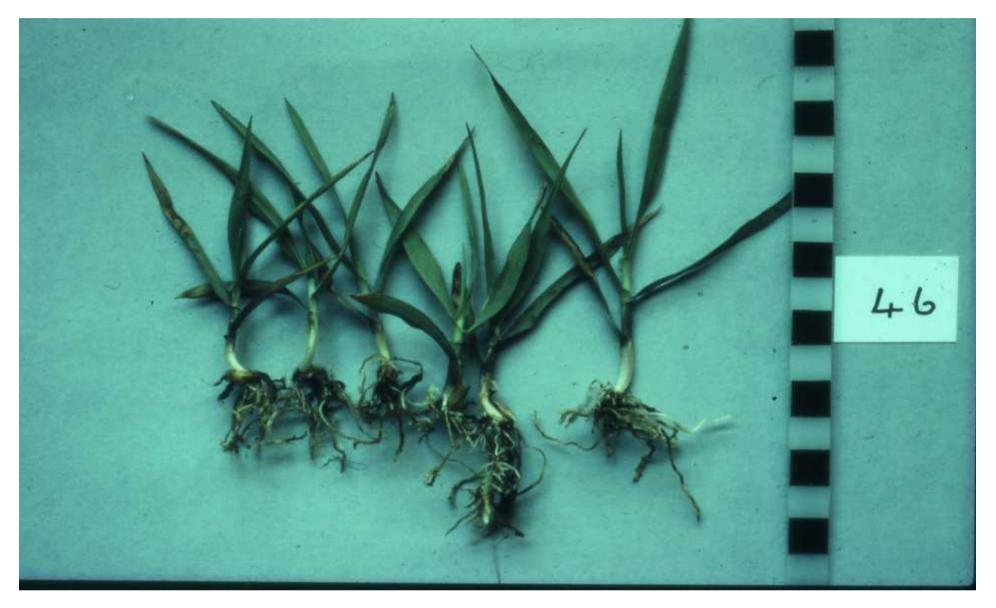
Liebiggs Barrel

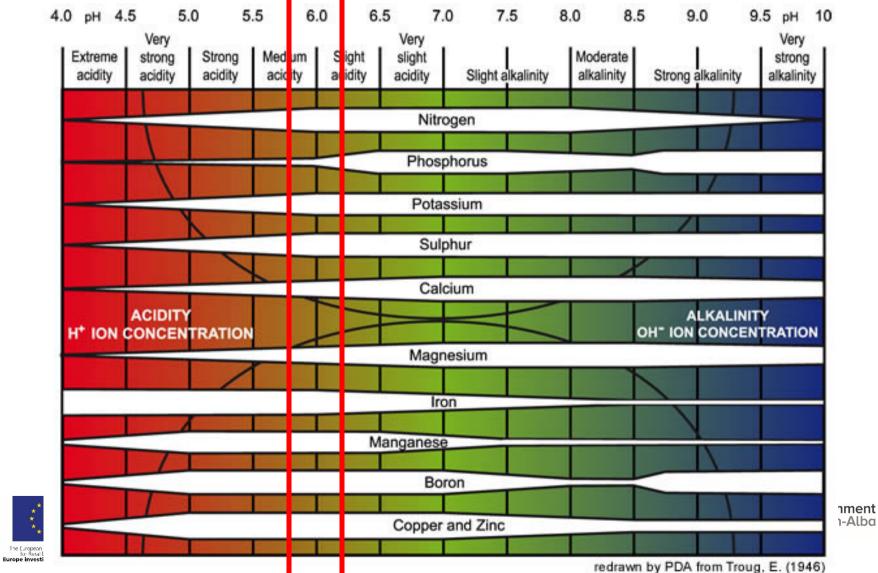
The European Agricultural Fund for Rural Development Europe investing in rural areas

The Importance of pH

Why is pH so important?

- At soil pH values below 5.6 in mineral soils in Scotland soluble aluminium inhibits cereal root growth and reduces yield.
- Plant produces stubby roots instead of long fibrous roots – limits nutrient uptake
- At best limits yield, at worst crop is a right off




Notice thick, stubby roots

Limits the availability of other nutrients

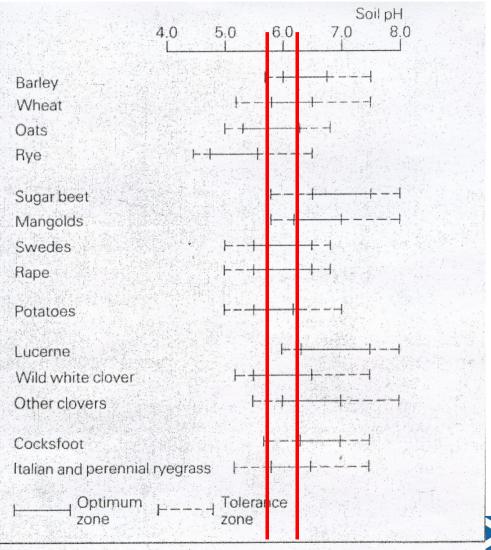
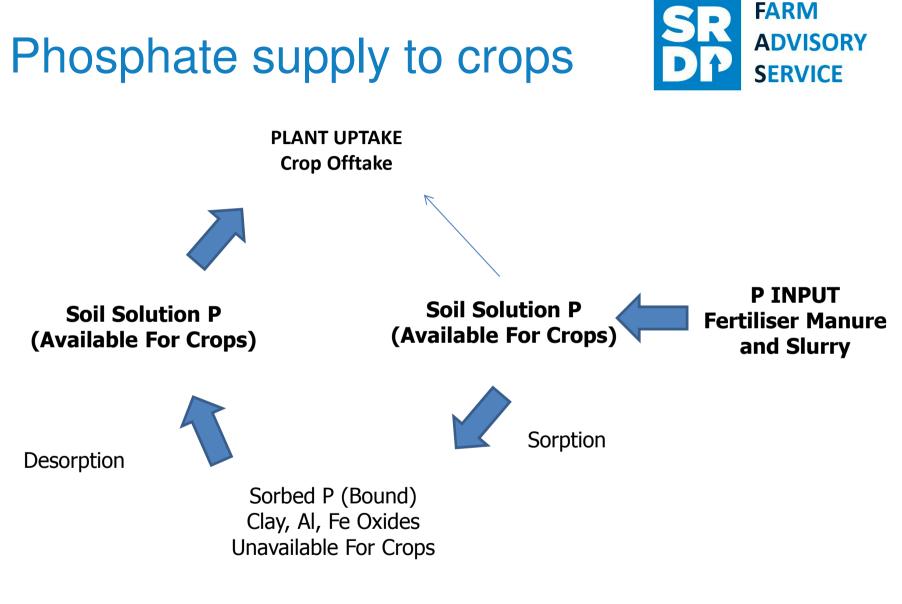


Figure 15.2 Acidity tolerance of the main crop species

Scottish Government Riaghaltas na h-Alba gov.scot

The Importance of phosphate

Phosphate the facts!



- Helps root development and early growth
- Availability of P reduced in low temperatures
- Essential to have available P in a reseed and spring cropping

Knowing our soils - Phosphate

PSC 1	PSC 2	PSC 3	
Arkaig	Ettrick	Darleith/Kirktonmoor	
Countesswells/ Dalbeattie/ Priestlaw	Strichen	Rowanhill/ Giffnock/ Winton	
Corby/ Boyndie/ Dinnet	Alluvial Soils	Foundland	
Balrownie	Sourhope	Tarves	
Thurso	Yarrow/ Fleet	Insch	
Sorn/ Humbie/ Biel	Forfar	Kintyre	
Kippen/Largs	Darvel	Stirlng/ Duffus/ Pow/ Carbrook	
Millbuie	Kilmarock	Bargour	
Gleneages/ Auchenblae/ Collieston/ Darnaway	Eckford/ Innerwick	Lanfine	
	Mountboy		
***	*	Scottish Governme	

Adjustment required to P application

P Sorption	Soil P Status					
Capacity	Very Low (VL)	Low (L)	Mod (M-)	Mod (M+)	High (H)	
PSC1	+40	+20	0	-10	-20	
PSC2	+60	+30	0	-20	-30	
PSC3	+80	+40	+20	0	-40	

 The additional P required to raise the P status to moderate status

The Importance of Potash

Potash the facts!

- Deficiency affects
 - -Nutrient uptake
 - Photosynthesis
 - -Rate of growth
 - Feed value
- Clover sensitive to low potash
- Be aware of applying in the spring for risk of staggers

- Application to reseeds is a must to help establish clover and grass
- Grazing
 - Apply enough to maintain soil status
- Silage/Hay
 - Replace offtake to maintain status

Raising a Potash Status

Grass Management	K ₂ O Soil K Status				
	Very Low	Low	Moderate	High	
Grass with high clover, red clover	+60	+20	0	K Offtake x 0.5	
All other grass management Options	+60	+20	0	K Offtake x 0.5	

Importance of Sulphur

- Required for the efficient use of Nitrogen
- In the past enough received from the atmosphere
- New Technical Note on Sulphur about to be published
- Apply Sulphur with your Nitrogen

+ 90kg/S

+90kg/ha S

The European Agricultural Fund for Rural Development Europe investing in rural areas

No S

No S

Why use GPS soils sampling?

- Reduce in-field nutrient variation
- Reduce crop variability
- Optimise growing conditions
- Maximise resource efficiency
- Increase average yield
- Increase profitability

Why is pH variable?

- Traditionally one rate for the field lime spreading techniques make it unpredictable to know where high and low pH may be
- Amalgamation of several fields into one may result in varied soil types
- Different cropping history/land management

Why is pH variable?

- Light and heavy soil types
- Yield differences
- Previous application error (overlap or over/under application)
- Lime tipped in fields

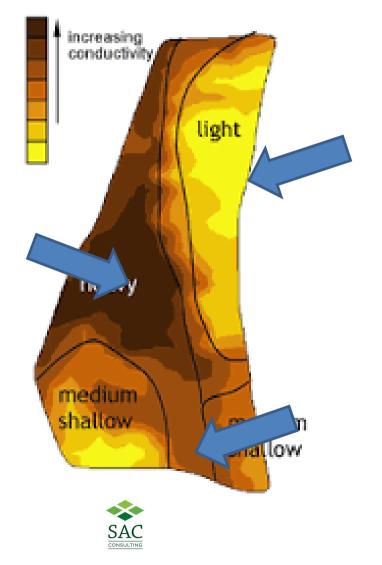
The differences in sampling systems

What happened in the past?

Electromagnetic Induction (EMI)

• Sample field based on scanned zones usually at 24m intervals but can be less

The European Agricultural Fund for Rural Development Europe investing in rural areas

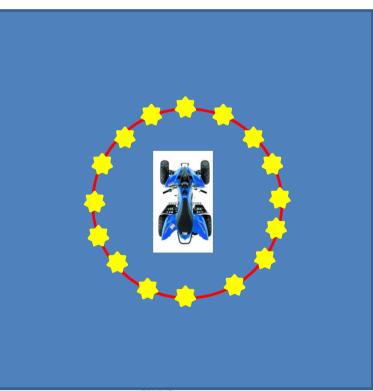


Scottish Government Riaghaltas na h-Alba aov.scot

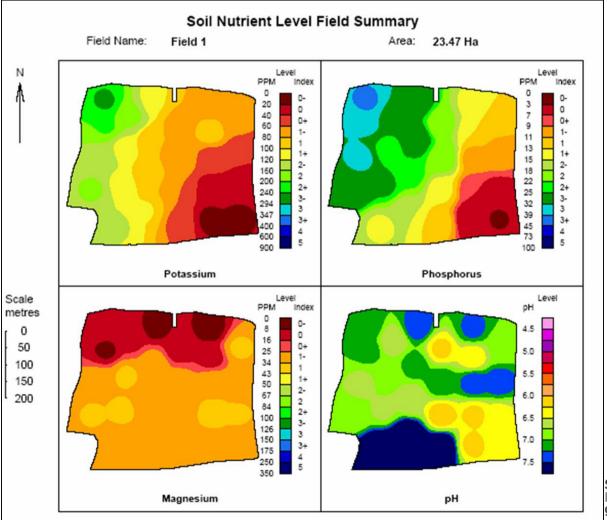
Electromagnetic Induction (EMI)

Electromagnetic Induction (EMI)

- Map generated similar to scanned map for pH, P and K
- Questions
 - Can a spreader/operator cope with wavy results?
 - At what point should a field be scanned (field capacity)?



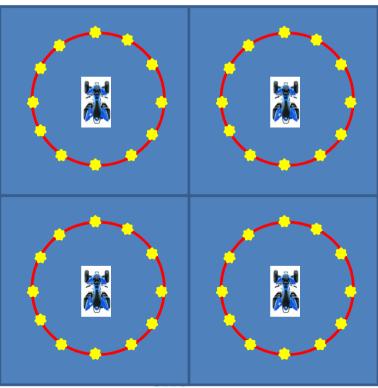
- Generally offer 1 sample per ha pH, P and K
- 16 sub samples taken from the ha



The European Agricultural Fund for Rural Development Europe investing in rural areas

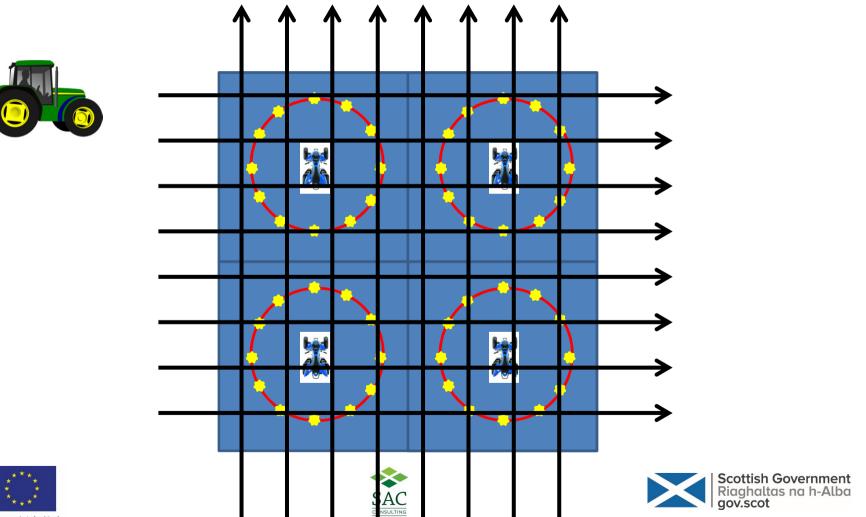
The European Agricultural Fund for Rural Development Europe investing in rural areas Scottish Government Riaghaltas na h-Alba gov.scot

- Questions
 - Can a spreader/operator cope with wavy results?



Grid Based Sampling

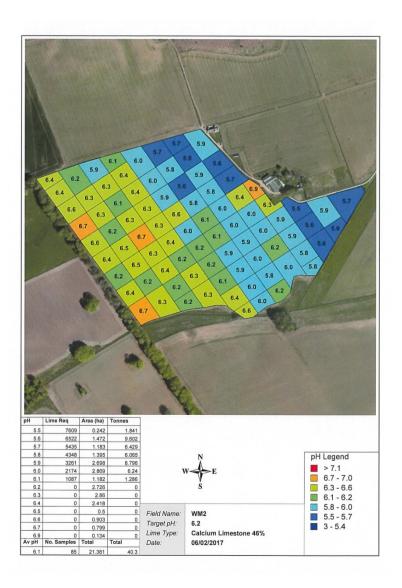
- 4 samples per ha
- 12 sub samples (48 per ha)



Scottish Government Riaghaltas na h-Alba gov.scot

CONSULTING

Grid Based Sampling

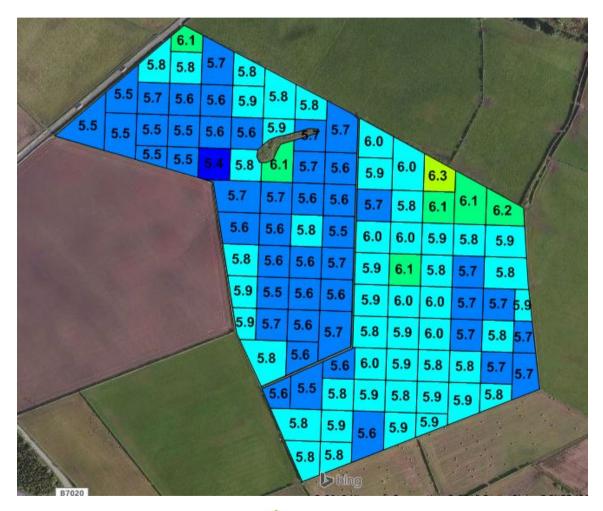


Grid Based Sampling

SAC

t

Results from the fields tested at Limekilns



Field 1 - pH

Field 1 - Results

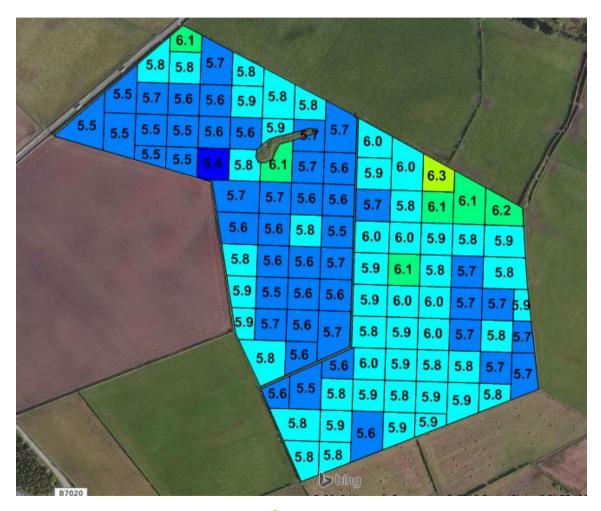
Routine Sampling

- Average pH = 5.8
- Arable lime requirement = 4t/ha
- Field Size = 12.76ha
- Total lime required = 51.04t

Field 1 Results

GPS Sampling

- Average pH = 5.7
- Range in pH = 5.4 6.1
- Range in lime required = 8.7t/ha 1.1t/ha
- Total lime required = 73.20t
- Difference +22t of lime



Field 2 pH

Field 2 - Results

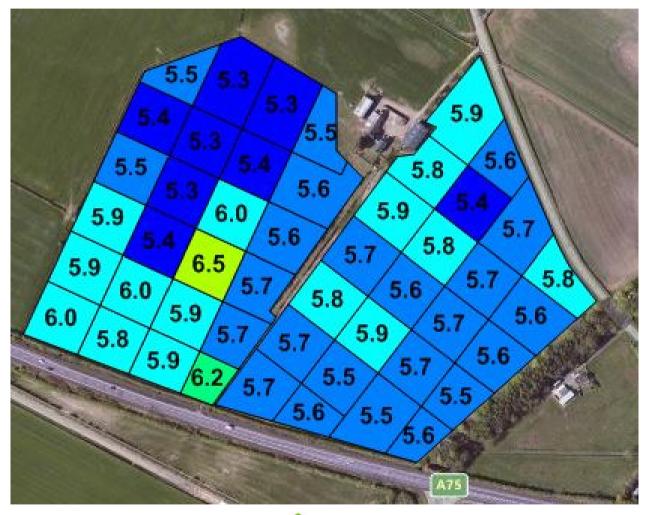
Routine Sampling

- Average pH = 5.9
- Arable lime requirement = 3t/ha
- Field Size = 13.52ha
- Total lime required = 40.56t

Field 2 - Results

GPS Sampling

- Average pH = 5.9
- Range in pH = 5.5 6.3
- Range in lime required = 7.6t/ha 0t/ha
- Total lime required = 50.10t
- Difference +9.54t of lime



Field 3 pH

Field 3 - Results

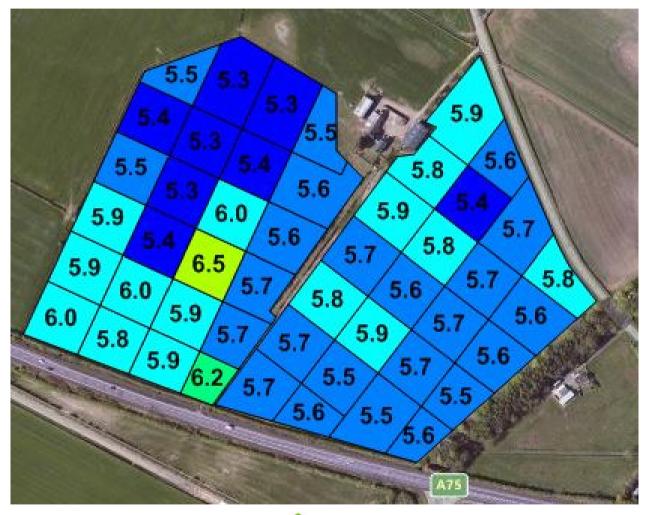
Routine Sampling

- Average pH = 5.5
- Arable lime requirement = 7t/ha
- Field Size = 6.11ha
- Total lime required = 42.77t

Field 3 - Results

GPS Sampling

- Average pH = 5.7
- Range in pH = 5.3 6.5
- Range in lime required = 9.7t/ha 0t/ha
- Total lime required = 36t
- Difference in lime -6.77t of lime



Field 4 pH

Field 4 - Results

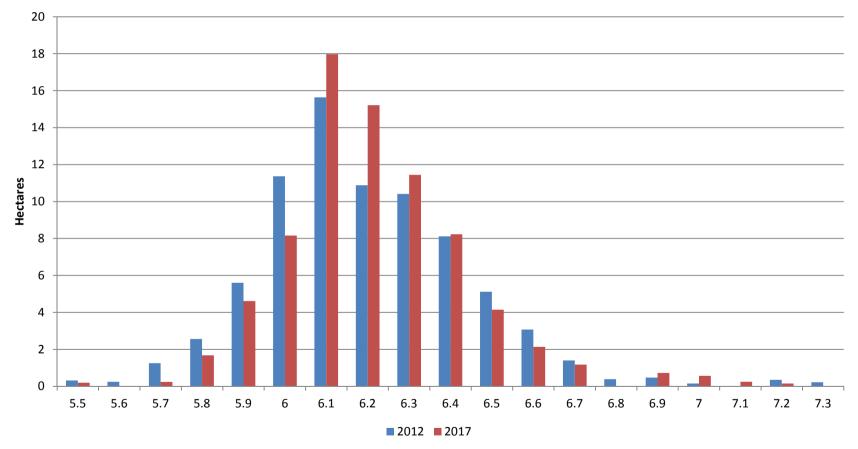
Routine Sampling

- Average pH = 5.7
- Arable lime requirement = 5t/ha
- Field Size = 6.10ha
- Total lime required = 30.5t

Field 4 - Results

GPS Sampling

- Average pH = 5.7
- Range in pH = 5.4 5.9
- Range in lime required = 8.7t/ha 3.3t/ha
- Total lime required = 34.1t
- Difference in lime +3.6t



pH Comparison 2012 v 2017

Remember the golden rules

- 2 t/acre (5t/ha) maximum applied in one application
- If more required split the application
- Lime can take 18 months to fully neutralise

Cost benefit

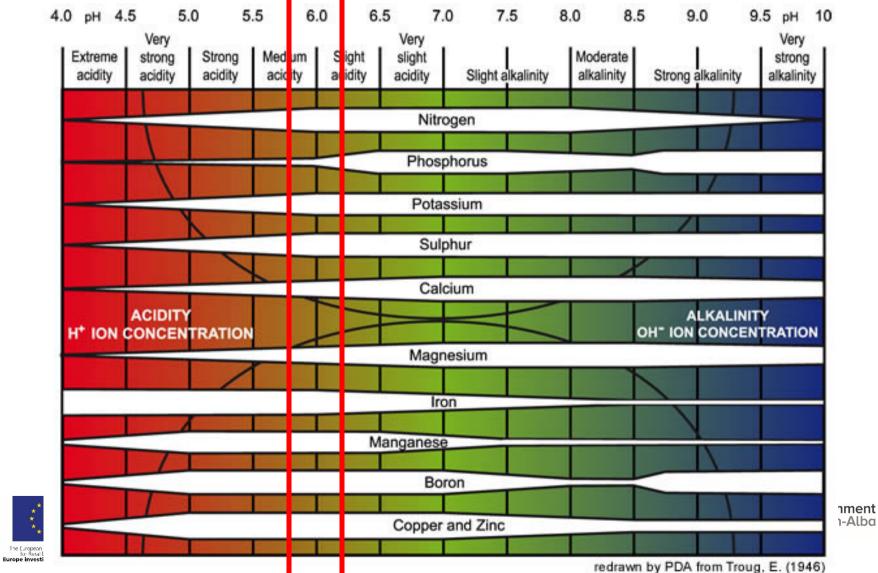
- Sampling costs vary typically £25-30/ha
- In this case no saving in lime in first year
- Typical cost benefit of applying lime is between 2:1 and 8:1 but very dependent on situation.

Sampling for P and K

What are you sampling for?

- Available phosphate
- Available potash

What is the availability of P and K dependent on?

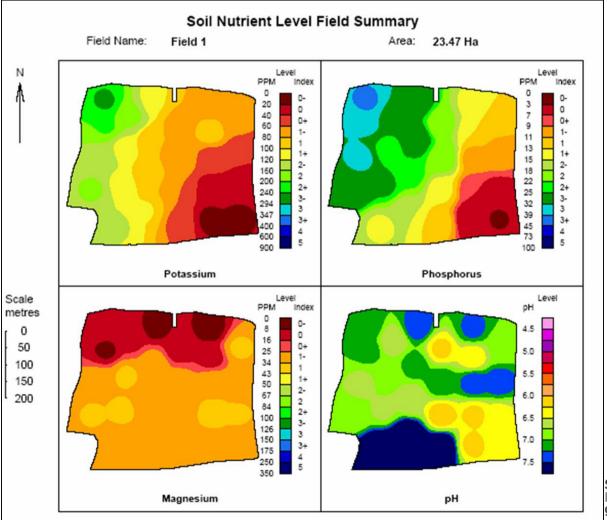


Limits the availability of other nutrients

Soil P and K levels may be adequate but they are not available to the plant due to low pH

=

Savings on P and K by correcting pH



The European Agricultural Fund for Rural Development Europe investing in rural areas Scottish Government Riaghaltas na h-Alba gov.scot

Zoning Fields for P and K – Principles.

- Aim is to forecast where soil fertility levels are likely to change.
- pH is very variable, lower cost and crops response is high - so grid sample.
- P, K, Mg tends to be less variable, higher cost of analysis and more intensive sampling only improves crop response when soil levels are low or high.
- With experience can forecast where soil fertility levels change using old field boundaries, yield levels, soil textures and farmer/advisor experience.

Scottish Government Riaghaltas na h-Alba gov.scot

FARM

ADVISORY

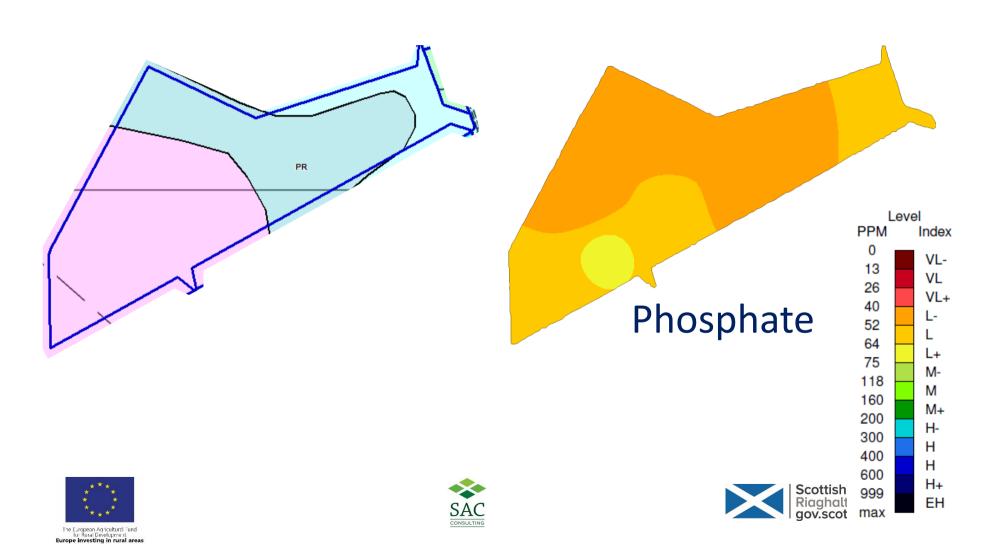
SERVICE

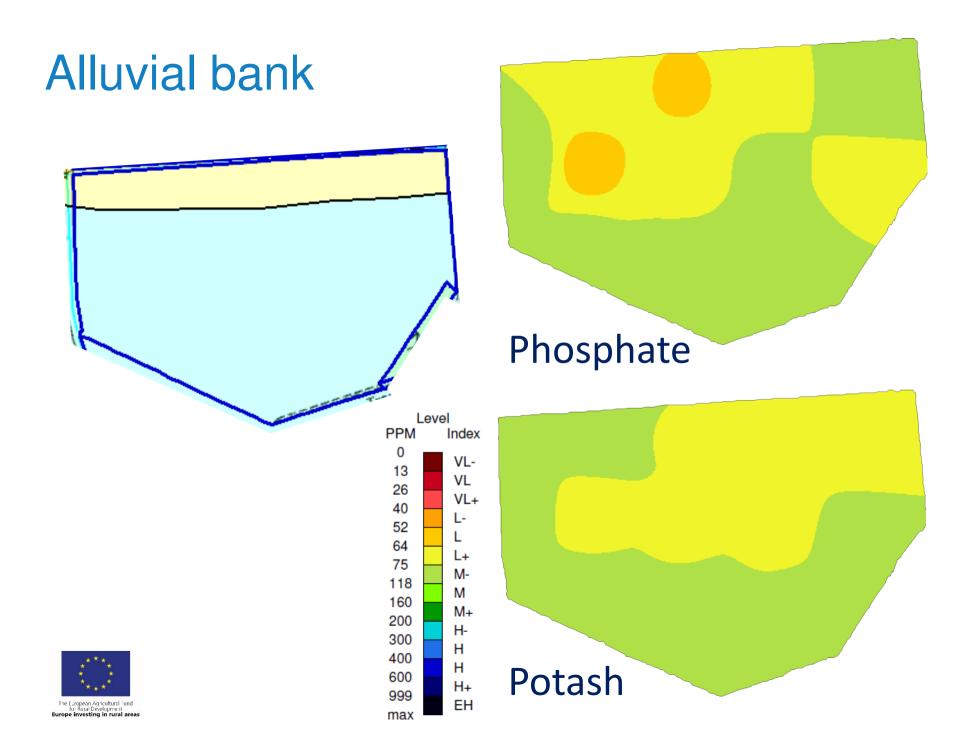
Zoning Fields: Then use Yield Zones

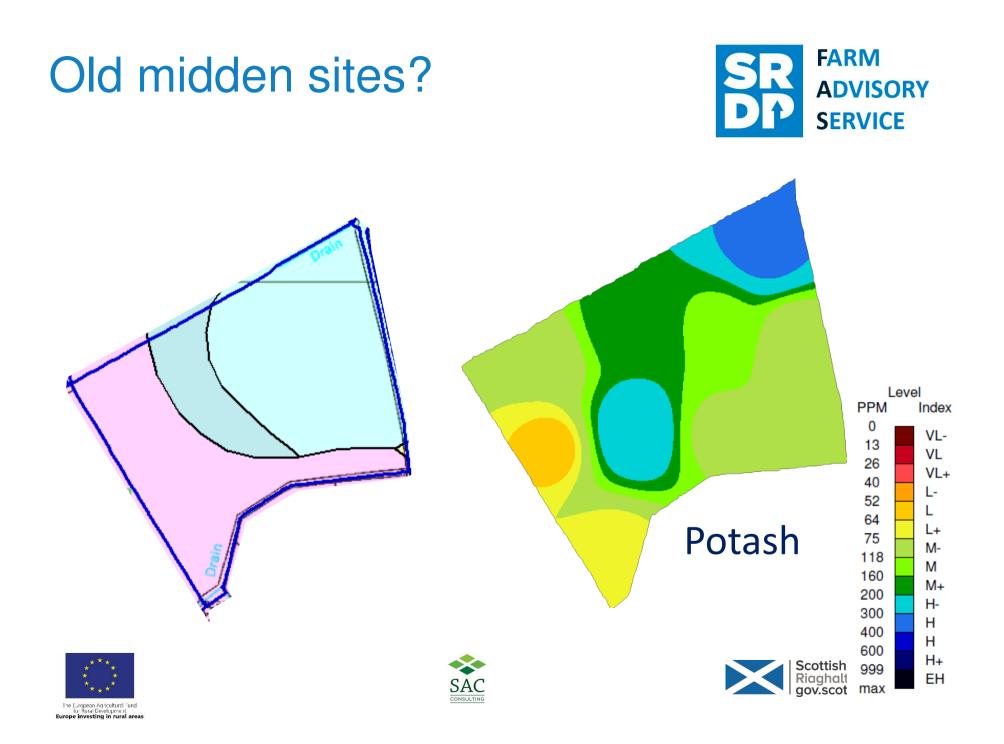
- Divide old field boundaries up into different yield zones
- If the yield changes within each old field split into low, medium and high yield zones (or just low / high)
- Also inconsistent yield zones
- High yielding areas tend to be lower in P and K due to greater removal, lower yielding areas tend to be higher in P and K due to application being greater than removal.

Zoning Fields: Finally split using other factors.

- Different soil textures light soil will hold less nutrients.
- Slopes and hollows subject to erosion and deposition.
- Drainage problems
- Tree shade
- Farmer and agronomist knowledge is key.

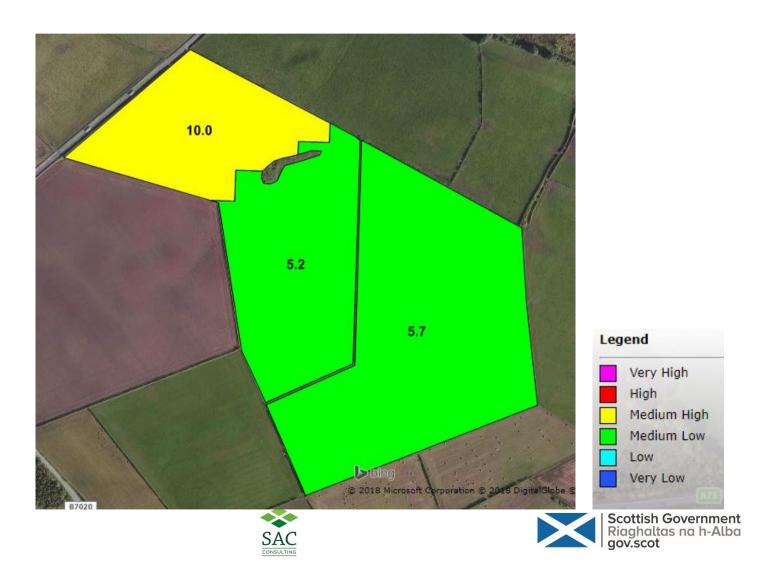






Moss and clay

- The use of zones can significantly reduce the soil analysis bill compared with grid sampling.
- Many fields may only have 2 or 3 zones, so less costly soil analysis needs to be carried out.



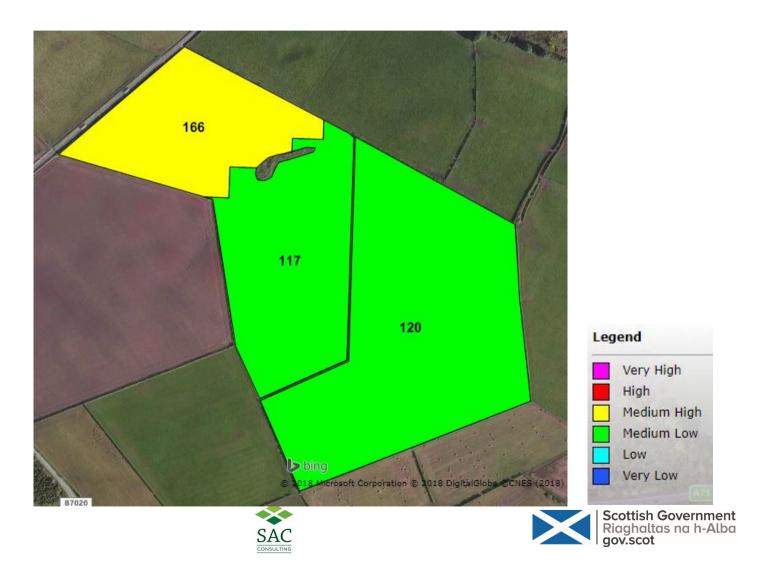
Field 1 and 2 P Results

The European Agricultural Fund for Rural Development Europe investing in rural areas

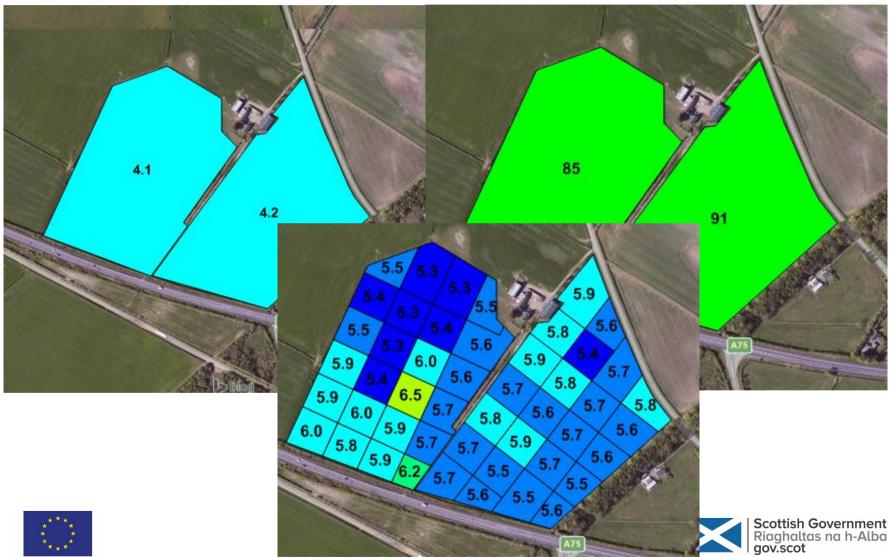
Field 3 and 4 Phosphate

Legend

Field 3 and 4 Potash



Field 1 and 2 Potash



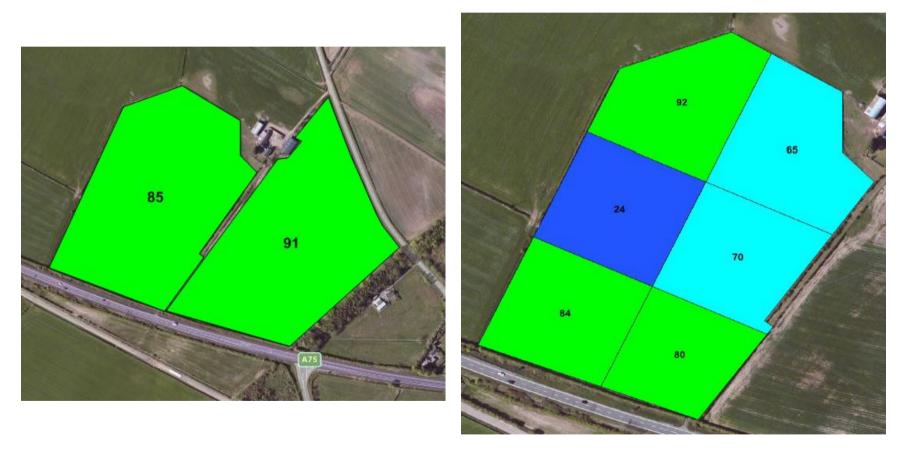
The European Agricultural Fund for Rural Development Europe investing in rural areas

Fields 3 and 4

The European Agricultural Fund for Rural Development Europe investing in rural areas

Sampling Differences – Phosphate

- Standard
 - $-6ha \times 30kg/ha = 180kg$
 - Applied for 4 years = 720kg
- GPS
 - -3 ha @ 30kg/ha = 90kg
 - -1 ha @ 60kg/ha = 60kg
 - Applied for 4 years = 600kg


- Difference = 120kg of P
 - -120/46x100 = 260kg of TSP
 - -TSP at £362/t
 - $-Saving = \pounds94$
 - Additional sampling cost £26
 - -Net saving on P £68

Potential Savings - Potash

- Standard
 - $-6ha \times 20kg/ha = 120kg$
 - Applied for 4 years = 480kg
- GPS
 - -2 ha @ 20kg/ha = 40kg
 - -1 ha @ 60kg/ha = 60kg
 - Applied for 4 years = 400kg

Potential savings - Potash

- Difference = 80kg of K
 - $-80/60 \times 100 = 133$ kg of MOP
 - -MOP at £290/t
 - -Saving = £39
 - Additional sampling cost £26
 - -Net saving on P £13
- Total savings £81 or £13.50/ha

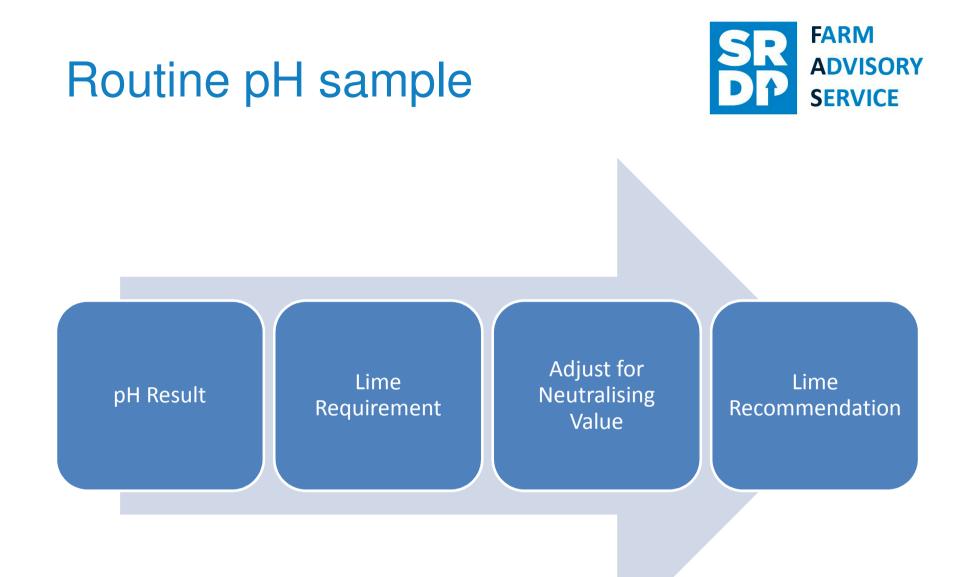
What factors do you need to think about?

Target pH

- What should your target pH be?
 - Arable rotation?
 - Grassland rotation?
 - Soil Type?
 - Starting pH values?

LIME ANALYSIS SUMMARY

Lime	Limehillock	Parkmore	Boyne Bay	Ullapool	Syke (Torrin)	North England	Fenstone (Yorkshire)	Calcipril	
Sample Properties									
Neutralising Value (NV)	44.9%	45.1%	44.2%	54.7%	56.2%	56.9%	51.1%	52.6%	
Calcium (Ca) Content	24.2%	24.1%	22.3%	17.7%	16.9%	17.2%	26.8%	27.2%	
Magnesium (Mg) Content	1.3%	1.5%	0.9%	9.6%	10.8%	10.9%	0.1%	0.3%	
Sample Grading	1								
Seive Size (mm)		% passe	d through			% passe	ed through		
4mm	100.0%	100.0%	99.6%	100.0%	100.0%	97.8%	100.0%	14.2%	
2mm	43.0%	76.8%	78.0%	87.3%	98.1%	75.7%	100.0%	0.4%	
1 mm	36.6%	65.0%	56.5%	59.7%	58.2%	57.8%	100.0%	0.1%	
).6mm	29.8%	51.9%	40.8%	41.3%	40.6%	47.6%	81.8%	0.1%	
).2mm	12.8%	48.4%	11.2%	27.2%	12.7%	17.4%	60.8%	0.0%	
).1mm	4.6%	22.8%	3.8%	17.7%	4.6%	12.1%	39.5%	0.0%	
		The finer th	e lime product the	more rapid the	e rate at which neut	ralisation in th	e soil occurs.		
Sample Characteristics		and a state							
Dry Matter	97.4%	99.1%	97.9%	96.5%	95.9%	96.2%	94.2%	99.4%	
Sample Size	1,560.1g	1,321.9g	1,640g	696.1g	1,358g	1,455.4g	229.6g	1,244.7g	
Pleas Example Cost Comparis		me products a	re derived from a		curring source tha				
Lime A = 45% NV @ £20/t de			- Calcium is the element that causes the soil particles to move apart for aeration and drainage.						
= £0.44/NV %			- Magnesium makes the soil particles stick together.						
					a high Mg content.	automatable O	a and Made in the set	11 41 41-	
.ime B = 56% NV @ £30/t de	livered				und that it is not the	extractable C	a and Mg in the so	in that's	
= £0.54/NV %		important, it is the ratio of the two nutrients - e.g. both extractable Ca and Mg can be low or high, yet have the right ratio in the soil.							
- 20.04111 /3			- In a clay soil the extractable Ca:Mg ratio between 4:1 and 7:1 is expected to ensure that the						
In this case Lime A works out the best buy when comparing the Neutralising Value (NV)			 magnesium is not excessive and detrimental to soil structure and aeration. In general, if your soil test is showing high magnesium levels in the soil there is no need to apply more and doing so may also impact soil structure. 						



Lime Recommendations

	ds (S, LS) Sandy loams		Other mi	Other mineral soils		Humose soils		Peaty soils		
	Perm. grass	Arable & rot. grass	Perm. grass	Arable & rot. grass	Perm. grass	Arable & rot. grass	Perm. grass	Arable & rot. grass	Perm grass	
6.3	0	0	0	0	0	0	0	0	0	0
6.2	0	0	0	0	2	0	0	0	0	0
6.1	0	0	2	0	3	0	0	0	0	0
6.0	2	0	3	0	4	0	0	0	0	0
5.9	2	0	4	0	5	0	2	0	0	0
5.8	3	0	4	0	5	2	3	0	0	0
5.7	4	2	5	2	6	2	4	0	0	0
5.6	4	2	6	3	7	3	5	0	2	0
5.5	5	3	6	4	8	4	6	2	4	0
5.4	5	4	7	4	9	5	7	2	5	0
5.3	6	4	8	5	10	6	8	3	6	0
5.2	7	5	8	6	10	6	9	4	7	0
5.1	7	5	9	6	11	7	10	5	8	2
5.0	8	6	10	7	12	8	11	7	10	4
4.9	8	7	10	8	13	9	12	8	11	5
4.8	9	7	11	8	14	10	13	9	12	6

Adjusting lime rates

5t/ha at 50% NV
At 56% NV = 50/56*5t/ha = 4.5t/ha

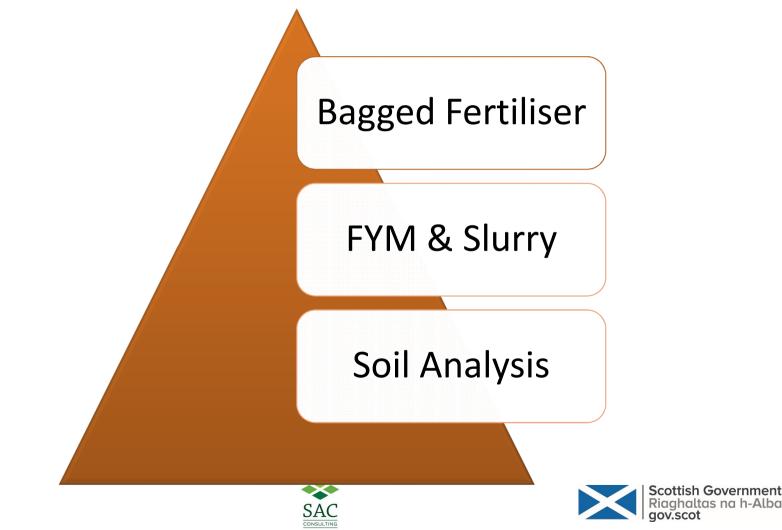
-At 44% NV = 50/44*5t/ha = 5.7t/ha

- 45% NV for £20/t
 -20/45= £0.44 per % of NV
- 56% NV for £30/t
 30/56 = £0.54 per % of NV

GPS files

Scottish Government Riaghaltas na h-Alba gov.scot

Phosphate and Potash Recommendations



P and K Recommendations

The European Agricultural Fund for Rural Development Europe investing in rural areas

Organic Manures – What's in Them? (TN650)

Manure Type	Total N	Total (P ₂ O ₅)	Total K (K ₂ O)
Cattle FYM	6	3.2	8.0
Pig FYM	7	6.0	8.0
Layer Manure	19	14	9.5
Broiler Litter	30	25	18
Cattle Slurry (3% DM)	4	1.2	3.5
Pig Slurry (3% DM)	3.6	2.2	1.6
Green Compost	7.5	3.0	5.5

Replace what is being taken off by the crop (TN633)

Сгор	P Removal (kg/t)	K Removal (kg/t)
Winter Barley	8.4	10.4
Winter Wheat	8.4	10.4
Spring Barley	8.6	11.8
Spring Oats	8.8	17.3
Winter Oats	8.8	17.3
Potatoes	1.0	5.8

Grass P and K Removal (TN652)

Utilisation	Defoliation	Yield (t/ha)	P Offtake (kg/ha)	K Offtake (kg/ha)
Silage	1 st Cut	23	39	138
Silage	2 nd Cut	12	20	72
Silage	3 rd Cut	9	15	54
Нау		7	41	126
Grazing		10	3	2

Building a Recommendation – Arable

		Phosphate (kg/ha)	Potash (kg/ha)
Soil Analysis Status		Low	Moderate
Required adjustment		-30	0
Spring barley removal	5t/ha	-43	-59
FYM	25t/ha	+80	+200
Balance		+7	+141

Building a Recommendation – Grass

		Phosphate (kg/ha)	Potash (kg/ha)
Soil Analysis Status		Low	Moderate
Required adjustment		-30	0
1st Cut Removal	23t/ha	-39	-138
2 nd Cut Removal	12t/ha	-20	-72
Slurry spring	30m ³ /ha	+36	+105
Slurry after 1 st cut	30m ³ /ha	+36	+105
Balance		-17	0

Thanks for listening

