

Grass: Yield, Quality And Utilisation

SAC Consulting: Poppy Frater

SAC Consulting is a division of SRUC

Leading the way in Agriculture and Rural Research, Education and Consulting

Base feed = pasture

SAC Consulting Farm Management Handbook:

Intensity-			100 units/	acre	
Fertiliser kg N/yr VARIABLE COSTS	75 (60)	125 (100)	40)	250 (200)	310 (248)
Seeds	19	19	/ /9	19	19
Fertiliser	66	91	125	172	211
Sprays	13	13	13	13	13
Establishment (annual share)	67	67	67	67	67
Other expenses		-	-	-	-
	166 (67)	191 (77)	225 (91)	272 (110)	311 (126)
Rent	370	370	370	370	370
Total	536	561	595	642	681

Per tonne? Depends on yield

£561/ha means...

- 7 t DM/ha/year = £80/tonne DM
- 5 t DM/ha/year = £112/tonne DM
- 3 t DM/ha/year = £187/tonne DM

Three key areas

In order of priority...

- 1.Soil health
- 2. Grazing management
- 3. Reseeding

- 1. What does this key area involve?
- 2. Why is it important for grassland management?

Summarise in two sentences

Soil Health

1. Structure

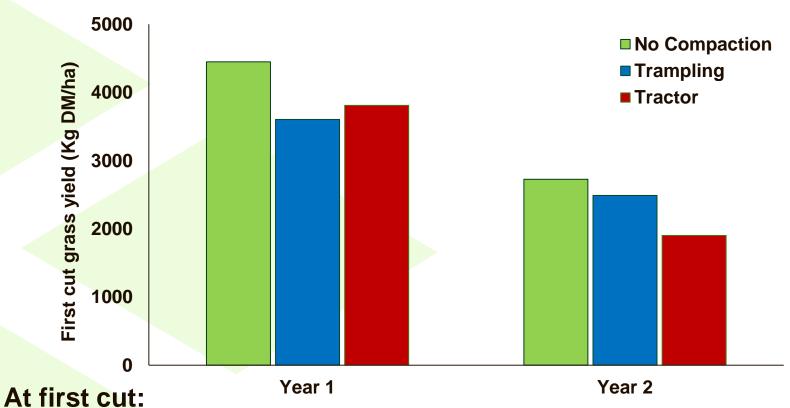
Signs of poor soil structure?

1. Structure: action required?

Severity?

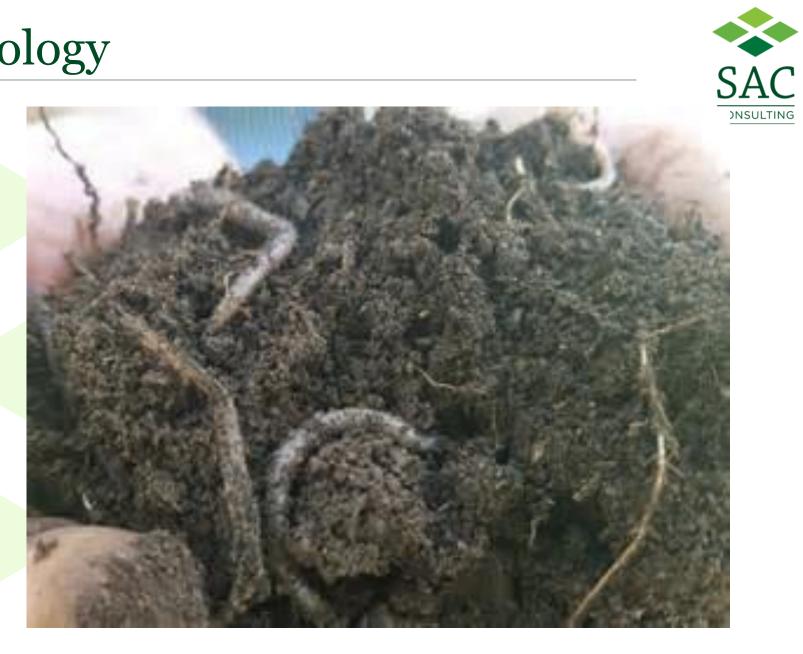
Target compaction with correct kit

- 0-10 cm aerator
- 10-15 cm sward lifter


Timing – Autumn if conditions allow

1. Structure: Crichton research

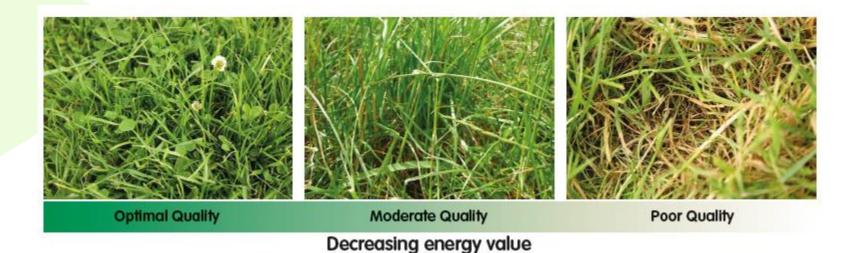
- Trampling compaction reduced grass DM yield by 14%
- Tractor compaction reduced grass DM yield by 22%



2. Chemistry: ?

3. Biology

The rotational grazing double whammy effect...

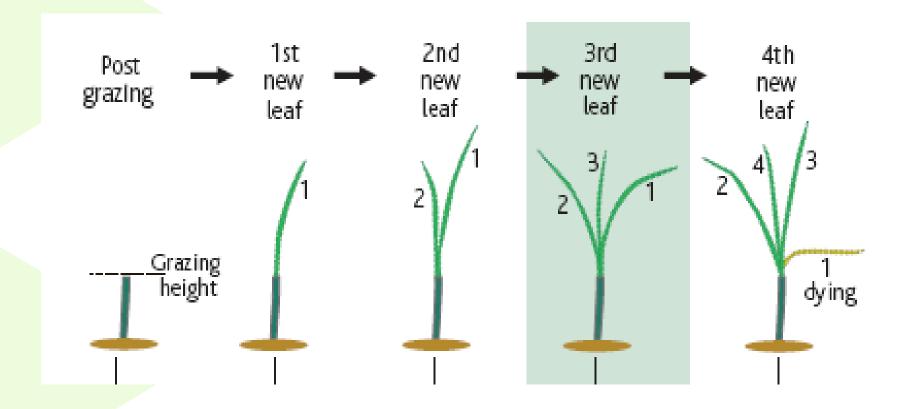


System	Annual Yield (t DM/ha)	Utilisation (%)	Usable yield (t DM/ha)	Percentage increase
Set stocking	8.5 (modest)	50	4.3	
Lax rotational	10.2	65	6.6	56%
Intense rotational	10.2	80	8.2	92%

NB some top dairy farmers are growing over 14tDM/ha and utilising >80%!

Plus improved quality...triple whammy

Leaf 11.5 MJ ME/kg DM
Stems 10.5 MJ ME/kg DM
Dead leaves <8 MJ ME/kg DM



Optimising grazing timing

How – the short answer

- Generally 7 acres is a good field size
- In at 10cm out at 4 cm (sheep) 5-9cm (cattle)
- Rest:

Depends on grass growth, but generally...

- Spring 15-20 days
- Summer

 25 days
- Autumn 30-40 days
- Winter 90-100 days

TYPE OF STOCK	PERIOD	ROTATIONAL PRE GRAZING HT-CM	ROTATIONAL POST GRAZING HT - CM	SET STOCKED CM
Lactating suckler cows	T'out- May	10-14	5-6	5-6
	June-July	12-15	7-8	7-8
	Aug-Nov	12-15	8-9	7-9
Dry cows				4
Growing/finishing cattle	T'out- May	10-12	5-6	5-6
	June-July	10-14	6-7	6-7
	Aug-Sept	10-15	7-8	7-8

TYPE	PERIOD	ROTATIONAL PRE GRAZING HT-CM	ROTATIONAL POST GRAZING HT-CM	SET STOCKED CM
Ewes & lambs	T'out- April-	8-10	4-5	4
	May-wean	8-10	4-6	4-6
Dry ewes	July-Aug			3
Pre-tupping	Sept-Nov	8-10	4-5	6-8
Weaned lambs	July-Sept	10-12	5-7	6-8

How?

- 1. Calculate feed supply
- 2. Daily flock/herd requirements
- 3. Supply ÷ Daily requirement = days of feed available

Feed supply

Measure: Kilograms of Dry matter (DM)

- Sward sticks
- Plate meters

Deduct: what you want to leave behind 'The residual' ~1500 kg DM/ha

Daily flock requirement – a guide

Stock		llocation (% of odyweight)
Dry Ewes or Cows Pregnant ewes or c Late lactation cows		
Finishing cattle Early to mid lactation Mid to late lactation Replacements		.5
Growing cattle Flushing ewes or co	3 ows	
Early lactation ewes Growing lambs	s 4	

Daily flock requirement – a guide

Stock

Allocation (% of bodyweight)

A 70 kg ewe in late pregnancy requires:

 $0.02 (2\%) \times 70 = 1.4 \text{ kgDM/head/day}$

Flock size is 200, therefore need 280 kg DM/day

Example

8ha field:

DM: 2400 kg DM/ha

x 8 = total 19200 kg DM

Deduct residual: 1500 kg DM/ha

x 8 = total 12000 kg DM

Available feed (excluding growth) is 7200 kg DM

Allocation: 200 x 70 kg ewes at 2 % of their body weight/day

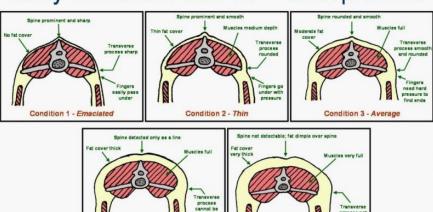
280 kg DM/day

Divide available feed by daily allocation = 25 days

Example

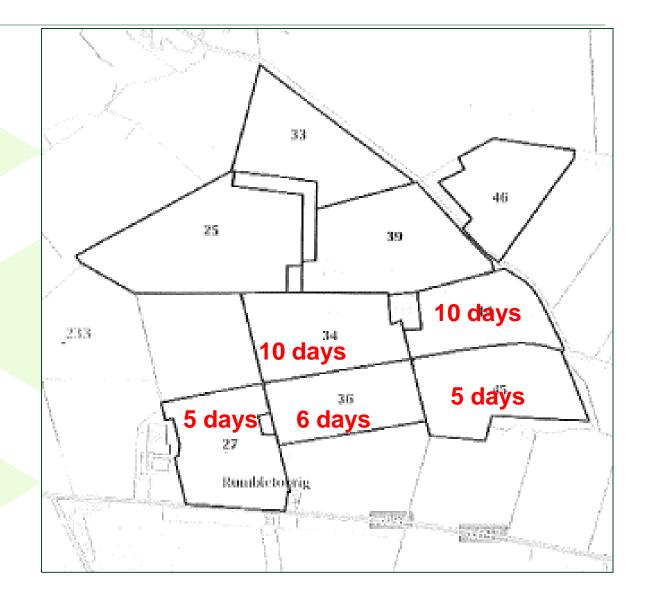
8ha Now I know how many days of feed, I can set up electric- DM fenced paddocks: Split field in half, move after DM 12 days Split into 5 and move every 5 days Alla Split into 25 and move every wei day

Divide available feed by daily allocation = 25 days


Ground truthing

- Body condition scoring
- Behaviour
- Liveweight gain
- Measure grass left behind

Body Condition Scores – Sheep/Goats



Condition 5 - Obese

Adapted from "Body Condition Scoring of Sheep" by J.M. Thompson and H. Meyer (Oregon State University)

Condition 4 - Fat

Reseeding

- Improve species composition
- Incorporate new grass genetics
- Address soil compaction

Table 1: The progress of a grass reseed

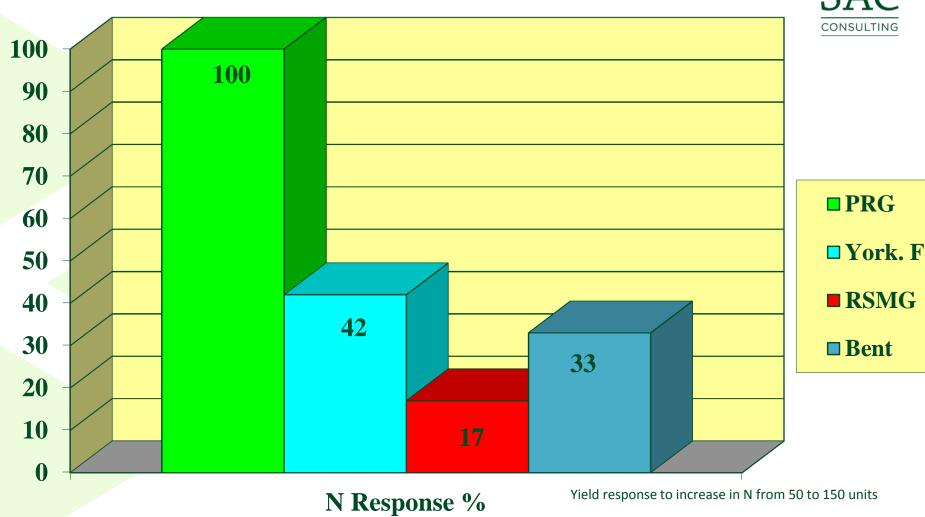
PRG Content (%)	Production (t DM/ha)	Herbage ME (MJ/kg DM)	Lost ME grown (MJ/ha)	Milk equivalent of lost ME (litres/ha)	Meat equivalent of lost ME* (kg LW/ha)	Concentrate cost to replace lost ME^ (£/ha)
95	13.5	12.0				
90	12.6	11.8	13,320	1,885	133	197
80	11.2	11.5	33,200	4,698	332	491
70	9.8	11.3	51,260	7,254	513	759
60	8.4	11.0	69,600	9,849	696	1,030
50	7.0	10.8	86,400	12,226	864	1,279

ME = Metabolisable energy

*assuming 100MJ per 1kg of gain for 350kg growing cattle

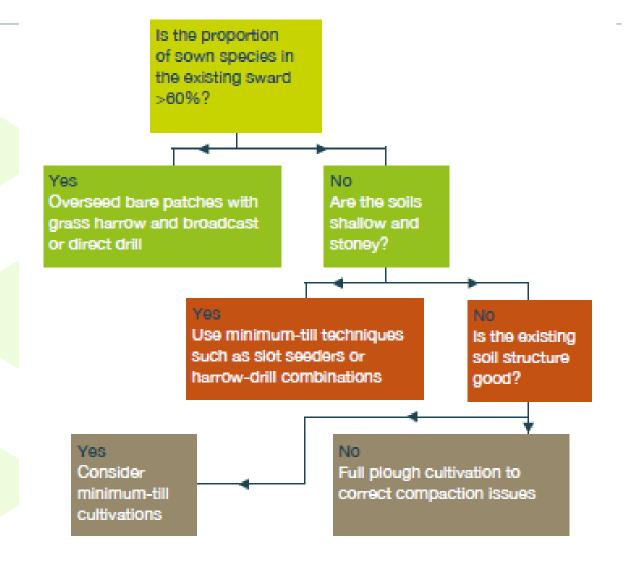
^based on 1.4p per MJ of ME

PRG = Perennial ryegrass


DM = Dry matter

Taken from AHDB Grassland Reseeding guide

Response to N



Source WPBS

Taken from AHDB Grassland Reseeding guide

Three key areas

In order of priority...

- 1.Soil health
- 2. Grazing management
- 3. Reseeding