

Soil Health/Soil quality – what is it and how do we measure it?

Bryan Griffiths

Bryan.Griffiths@sruc.ac.uk

1

What is a healthy soil?

Looks good Feels good Smells good

Easy to work Supports lot of life

What is soil?

Living soils

Huge quantity of organisms

- Fauna: 1-5 T/ha
- Fungi: 3.5 T/ha
- Bacteria: 1.5 T/ha

Fantastic diversity

- Until recently: only access to culturable microorganisms
- Methodological progresses
 ⇒ possibility to extract DNA from soils
 - ✤ 10⁴ 10⁶ bacterial genotypes / g sol
- A lot to be explored on the relations between below & aboveground diversity

Soils deliver many ecosystem services

Ecosystem services

Supporting

Nutrient recycling, primary production and soil formation, make it possible for the ecosystems to provide other services

- Provisioning
- Food, crops, raw materials (including timber, fodder, and fertilizer), genetic resources (including crop improvement genes), water
- Regulation Carbon sequestration and climate regulation, waste decomposition, purification of water, pest and disease control

Spiritual, historical, recreational

Cultural

Ecosystem services

Ecosystem Services Provided by Soil Biota Regulation of biogeochemical cycles Retention and delivery of nutrients to primary producers Maintenance of soil structure and fertility Bioremediation of pollutants Provision of clean drinking water Mitigation of floods and droughts Erosion control Regulation of atmospheric trace gases Pest and pathogen control Regulation of plant production via non-nutrient biochemicals

Soils and biodiversity are submitted to major threats

Erosion: 115 million hectares subject to water erosion, 42 million hectares to wind erosion.
 Contamination: 3.5 million sites could be contaminated

Decrease of organic matter: About 45% of European soils have low organic matter content
 Soil sealing: 1990-2000: 1,000 km² of soil/year , 2000-2006, the average loss increased by 3% http://ec.europa.eu/environment/soil/

So why is thus important

Why measure soil quality?

- Think of it in terms of:
- An MOT for your soil Or A check up at the doctors

Scottish soils - information available

http://www.soils-scotland.gov.uk/

https://horticulture.ahdb.org.uk/greatsoilsresourcesmaterials

http://www.crew.ac.uk/publication/valuingyour-soils

https://dairy.ahdb.org.uk/resourceslibrary/technical-information/grassmanagement/healthy-grassland-soilspocketbook/#.WeSwYv6WymQ

https://www.opalexplorenature.org/earthworm guide

https://www.sruc.ac.uk/info/120625/visual_ev aluation_of_soil_structure + http://sifss.hutton.ac.uk/SSKIB_Stats.php

File Edit View Favorites Tools Help

Sent Items - Mail...

SLIDES

Soil Information F...

RAS Nov 2017.ppt...

0 🔥

P → C III Soil Information For Scottis... ×

× ₪ -

File Edit View Favorites Tools Help

http://sifss.hutton.ac.uk/SSKIB Stats.php

Home > Research > Soil as Natural Capital > SIFSS

Introduction

Examples of information

Download and discover the financial savings and business benefits of good soil management www.farmingandwaterScotland.org

The brochure, pull-out sheets and videos contain a mix of practical and research experience, problem and action-specific farm case studies, useful check lists (e.g. how to take soil samples and check for compaction), images and web-links.

Practical pull-out guidance sheets:

- Taking soil samples for testing
- Visual evaluation of soil structure (VESS)
- ✓ How to check for and alleviate soil compaction
- ✓ Checking soil drainage status
- ✓ Grassland rejuvenation

Soil - a living resource

- Soil compaction and drainage
- ✓ Soil erosion
- Soil pH and nutrients
- Organic matter
- Reduced tillage
- Managing farm soils

Below is a taster summarising some key facts

Cost savings

Standard soil testing for pH and nutrient status is simple and low cost (~ £20 per sample).

For soils that vary within fields, GPS sampling (~ £25/ha for soil pH at 4 samples/ha) and variable lime and fertiliser applications could reduce bills by ~ 15%.

Controlled traffic farming could reduce fuel and time costs

Compacted or poorly drained soils can reduce yields by ~ 25%. Using a spade to identify soil structural problems (FREE!) and undertaking necessary soil loosening (~ £30/ha) will avoid unnecessary drainage maintenance (~£35/hr) and new drainage system/repair (~ £4000/ha) costs.

£70/ha/year and protect soils from compaction and erosion.

Soil structure, compaction and drainage

Structure

quality

Sq1

Friable

Sq2

Sa3

Firm

Most aggregates

and

Sq4

Compact

Requires

Sq5

with one hand

Very compact

MA

Difficult to

break up

Intact

Aggregates

easy to break

with one hand

reak with one

Aggregates

with fingers

Appearance after

soils

200

break-up: variou

Simple VESS assessments of

Assessments can identify

compaction and impeded

drainage which can reduce

conduct.

The

dicta

requ

soil structure take minutes to

Healthy Grassland Soils – Four quick steps to assess soil structure

Step one: Surface assessment

Look at sward quality to identify potentially damaged areas which require further asse

Step two: Soil extraction

- Dig out one spade-sized block of soil (depth approx. 30cm). Cut down on three sides and then lever the block out leaving one side undisturbed Lay soil block on a plastic sheet or tray
- Tip: When starting out it is useful to dig in an area where you know there may be a problem (eg a gateway) and get familiar with signs of soil structure damage. Remember: Sample when the topsoil is moist - if the soil is too dry or too wet it is
- difficult to distinguish signs of poor soil structure

Step three: Soil assessment

Gently open the soil block like a book to break it up

 If the structure is uniform – assess the block as a whole If there are two or more horizontal layers of differing structure identify the layer with the poorest structure Carry out the rest of the assessment on this limiting layer

Good

TA

Break up the soil with your hands into smaller structural units (known as aggregates)

- Assign a score by matching what you see to the descriptions and photos overleaf
 A score of 1 or 2 is Good; a score of 3 Moderate; and
- A or 5 is Poor and requires management action
 Record depth of limiting layer to assess management optio

The European Agricultural Fund for Rural Development Europe investing in rural areas

Biological

- Feed the soil regularly through plants and OM inputs
- Move soil only when you have to
- Diversify plants in space and time

KNOW YOUR SOILS; principles to improve soil health

Chemical

Maintain optimum pH

- Provide plant nutrients right amounts in the right place at the right time
- Know your textures and minerals

– buffering capacity, free supply!

Physical

Know your textures and understand limits to workability, trafficability

•Optimise water balance through drainage if necessary

•Improve soil structure – effective continuous pore space

General effects of management on soil health

Tend to Reduce Soil Health	Tend to Promote Soil Health
Aggressive tillage	No-till or conservation tillage
Annual/seasonal fallow	Cover crops; Relay crops
Mono-cropping	Diverse crop rotations
Annual crops	Perennial crops
Excessive inorganic fertilizer use	Organic fertilizer use (manures)
Excessive crop residue removal	Crop residue retention
Broad spectrum fumigants/pesticides	Integrated pest management
Broad spectrum herbicides	Weed control by mulching and/or cultural tactics

The benefits of improving soil quality...

Positive effects of earthworms on yield

FARM

With legumes (28)

nment h-Alba

ADVISORY

а

b

С

Van Groenigen et al 2014

-10

0

10

20

Earthworm effect (%)

30

40

50

60

Earthworm types

- Red worms vertical burrowers and surface living
- Pale (+green) worms soil feeding
- Stripy worms compost worms

Potential for Controlled Traffic Farming (CTF) in Grassland

Paul Hargreaves (SRUC Crichton Dairy Centre)

Experimental Work

- An 8 ha perennial ryegrass field at SW Scotland split into two
- Two traffic management treatments: normal (N) and CTF
- 3-cut silage system
- 9 m triple gang mower (9 m working width)

Controlled Traffic Farming – Working widths

The European Agricultural Fund for Rural Development Europe investing in rural areas

Results of Experimental Work

Silage Cut	Normal Traffic	Controlled Traffic	Difference (t DM ha ⁻¹)	P- value
1 st Cut (t DM ha ⁻¹)	5.28	5.43	0.15	0.27
2 nd Cut (t DM ha ⁻¹)	3.58	3.88	0.30	0.72
3 rd Cut (t DM ha ⁻¹)	2.34	2.84	0.50	<0.01
2 nd + 3 rd Cut	5.92	6.72	0.80	<0.05
Total silage	11.29	12.15	0.96	

Developments in measuring soil quality

• More background information – AHDB

GREATSOILS

- Thresholds and database BBSRC-SARIC
- Putting it together RESAS

Why measure soil quality?

- Think of it in terms of:
- An MOT for your soil Or A check up at the doctors
- Working towards
 - (i) rolling out soil quality testing
 - (ii) 'what if' model for knowledge exchange

Why measure soil quality?

- Think of it in terms of:
- An MOT for your soil Or A check up at the doctors
- Working towards
 - (i) rolling out soil quality testing
 - (ii) 'what if' model for knowledge exchange

First questions

- What is the state of my soil?
- Depends on
 - -Soil type
 - -What you do with it
- How do I tell?
 - Need indicators as can't measure everything

Components of soil quality

Scottish Government Riaghaltas na h-Alba gov.scot

Putting it all together will need a different approach to sample collection linking physical observation and soil samples sent for testing

Rolling out soil quality testing Scorecard threshold values

Based on proposals for soilquality.org.uk (based on the Australian model - <u>http://www.soilquality.org.au/</u>) to enable utilisation of a wider database for benchmarking and ultimately advice.

The traffic light sytem represents:

RED (High risk, need to investigate urgently) AMBER (Moderate risk, need to investigate further) GREEN (Low risk, continue to monitor)

Potential scorecard...

ACME SOIL ANALYSIS COMPANY

Report for Mr A. Farmer

Еι

(who has a grassland field that needs some lime,

has had a fair bit of P added and is compacted)

рН	
Р	
К	
Mg	
Potentially Mineralisable Nitrogen	
Loss on Ignition	
VESS	
Earthworms	
DNA measures	

Would be followed with links to or hard copy of background information on the parameters measured, especially if red or amber.

Backed up by details...

Scotland – Extractable P (Modified Morgan's)

Bar chart classes	Traffic light colour	Description of this class (e.g. toxic)
0-1.7		VL – risk to production
1.8-4.4		L – potential risk to production
4.5-9.4		M-
9.5-13.4		M+
13.5-30.0		H – potential risk to environment
> 30.0		VH – risk to environment

Links to information sheets, websites, apps.

Hardcopy options

Making more of the results

soilquality.org.uk

Potential for benchmarking

- As in the current SRUC 'AGREcalc' where you can see your carbon footprint in relation to others
- You will be able to see how your soils perform against comparable soils and over time
- Benchmarking will improve the more data is entered

nt

Great Southern Albany Sand Plain - pH (CaCl₂) - 0 - 10 cm

Australia / Western Australia / Great Southern

Year	Soil Texture	Rainfall	Management Group	Land Use	Sample Size
All	All	All	Albany Sand Plain	All	261
All	All	All	Albany Sand Plain	Cropped	51
All	All	All	Albany Sand Plain	Permanent Pasture	106

Graph Additional DataSet	S	
Year	All	\$
Soil Texture	All	\$
Rainfall	✓ All Cropped	¢
Management Group	Permanent Pasture Crop + Pasture Bushland	÷
Land use	All	\$

Fact Sheets related to pH (CaCl₂) · 0 · 10 cm

- Making Sense of Chemical Indicators
- Managing Soil Acidity WA
- Soil Acidity

The European Agricultural Fund for Rural Development Europe investing in rural areas

Questions

- Would that be useful?
- Would the ability to relate values regionally and/or over time be useful?

Why measure soil quality?

- Think of it in terms of:
- An MOT for your soil Or A check up at the doctors
- Working towards
 - (i) rolling out soil quality testing
 - (ii) 'what if' model for knowledge exchange

'what if' model for knowledge exchange

- To get across the interactions that go towards soil quality
- To present some basic scenarios for management change
- Lead you to other sources of information

Background information – effects of general management options

DRIVER				Reduced Tillage	
			Earthworms	+	
			Microbial biomass +		Circuite estable a
		+ve	Enzyme activity	+	Similar tables
	Biology		Biodiversity	+	for:
	Diology		Natural enemies	+	No-till
EFFECTS			Slugs	+	
		-ve	Weeds	+	Cover crops
			Diseases	+	High N
		+ve	Soil Organic Matter	+	amondmont
Chemistry			Nutrient Loss	-	amenument
	Chemistry	emistry -ve	Herbicide Use	+	High C
			Pesticide Loss		amendment
			Nutrient Immobilisation		
	Physics		Soil Structure	+/-	
	FTIYSICS		Trafficiability	+	
			Water infiltration	+	
			Yield	-	
	Margin		Short Term	-	
			Long Term	+	

Knowledge introduction – visual tool

- Rationale was to visualise those complex interactions
- To give rapid overview of the general responses to expect

7

Knowledge introduction – visual tool

I'd like to know about the effects of changing management to.....

.

 Would that be useful as a way to think about soil quality?

Thank You

Visual Evaluation of Soil Structure

Soil structure affects root penetration, water availability to plants and soil aeration. This simple, quick test assesses soil structure based on the appearance and feel of a block of soil dug out with a spade. The scale of the test ranges from Sq1, good structure, to Sq5, poor structure.

Equipment:

Garden spade approx. 20 cm wide, 22-25 cm long. Optional: light-coloured plastic sheet, sack or tray ~50 x 80 cm, small knife, digital camera.

When to sample:

Any time of year, but preferably when the soil is moist. If the soil is too dry or too wet it is difficult to obtain a representative sample.

Roots are best seen in an established crop or for some months after harvest.

Where to sample:

Select an area of uniform crop or soil colour or an area where you suspect there may be a problem. Within this area, plan a grid to look at the soil at 10, preferably more, spots. On small

experimental plots, it may be necessary to restrict the number to 3 or 5 per plot.

Bruce Ball, SRUC (<u>bruce ball@sruc ac.uk</u>), Rachel Guimarães, University of Maringá, Brazil (rachellocks@gmail.com), Tom Batey, Independent Consultant (<u>2033@tombatey.f2s.com</u>) and Lars Munkholm, University of Aarhus, Denmark (Lars.Munkholm@agrsci.dk)

Method of assessment:					
Step	Option	Procedure			
Block extraction and examination					
1. Extract soil block	Loose soil	Remove a block of soil ~15 cm thick directly to the full depth of the spade and place spade plus soil onto the sheet, tray or the ground			
	Firm soil	Dig out a hole slightly wider and deeper than the spade leaving one side of the hole undisturbed. On the undisturbed side, cut down each side of the block with the spade and remove the block as above.			
2. Examine soil block	Uniform structure	Remove any compacted soil or debris from around the block			
	Two or more horizontal layers of differing structure	Estimate the depth of each layer and prepare to assign scores to each separately.			
Block break-up					
 Break up block (take a photograph - optional) 		Measure block length and look for layers. Gently manipulate the block using both hands to reveal any cohesive layers or clumps of aggregates. If possible separate the soil into natural aggregates and man-made clods. Clods are large, hard, cohesive and rounded aggregates.			
4. Break up of major aggregates to confirm score		Break larger pieces apart and fragment it until a piece of aggregate of 1.5 - 2.0 cm. Look to their shape, porosity, roots and easily of break up. Clods can be broken into non-porous aggregates with angular corners and are indicative of poor structure and higher score.			
Soil scoring					
5. Assign score		Match the soil to the pictures category by category to determine which fits best.			
6. Confirm score from:		Factors increasing score:			
	Block extraction	Difficulty in extracting the soil block			
	Aggregate shape and size	Larger, more angular, less porous, presence of large worm holes			
	Roots	Clustering, thickening and deflections			
	Anaerobism	Pockets or layers of grey soil, smelling of sulphur and presence of ferrous ions			
	Aggregate fragmentaion	Break up larger aggregates $\sim 1.5-2.0~\text{cm}$ of diameter fragments to reveal their type			
7.Calculate block scores for two or more layers of differing structure		Multiply the score of each layer by its thickness and divide the product by the overall depth, e.g. for a 25 cm block with 10 cm depth of loose soil (Sq1) over a more compact (Sq3) layer at 10-25 cm depth, the block score is $(1 \times 10)/25 + (3 \times 15)/25 = $ Sq 2.2.			
Scoring: Scores may fit between Sq categories if they have the properties of both. Scores of 1-3 are usually acceptable whereas scores of 4 or 5 require a change of management					

Structure quality	Size and appearance of aggregates	Visible porosity and Roots	Appearance after break-up: various soils	Appearance after break- up: same soil different tillage	Distinguishing feature	Appearance and description of natural or reduced fragment of ~ 1.5 cm diameter		0 1
Sq1 Friable Aggregates readily crumble with fingers	Mostly < 6 mm after crumbling	Highly porous Roots throughout the soil			Fine aggregates	1 cm	The action of breaking the block is enough to reveal them. Large aggregates are composed of smaller ones, held by roots.	2 3 4 5
Sq2 Intact Aggregates easy to break with one hand	A mixture of porous, rounded aggregates from 2mm - 7 cm. No clods present	Most aggregates are porous Roots throughout the soil			High aggregate porosity	1 cm	Aggregates when obtained are rounded, very fragile, crumble very easily and are highly porous.	
Sq3 Firm Most aggregates break with one hand	A mixture of porous aggregates from 2mm -10 cm; less than 30% are <1 cm. Some angular, non- porous aggregates (clods) may be present	Macropores and cracks present. Porosity and roots both within aggregates.			Low aggregate porosity	1 cm	Aggregate fragments are fairly easy to obtain. They have few visible pores and are rounded. Roots usually grow through the aggregates.	10-
Sq4 Compact Requires considerable effort to break aggregates with one hand	Mostly large > 10 cm and sub-angular non- porous; horizontal/platy also possible; less than 30% are <7 cm	Few macropores and cracks All roots are clustered in macropores and around aggregates			Distinct macropores	1 cm	Aggregate fragments are easy to obtain when soil is wet, in cube shapes which are very sharp-edged and show cracks internally.	15-
Sq5 Very compact Difficult to break up	Mostly large > 10 cm, very few < 7 cm, angular and non- porous	Very low porosity. Macropores may be present. May contain anaerobic zones. Few roots, if any, and restricted to cracks			Grey-blue colour		Aggregate fragments are easy to obtain when soil is wet, although considerable force may be needed. No pores or cracks are visible usually.	cm

EXPLORE

NATURE

Take a responsible friend who can help if things go wrong. Ensure that you have permission from the landowner to dig holes on their land. Wear plastic gloves and wash your hands before eating. Cover

any open wounds before starting the activity.

Designed by FSC Publications

initiative which is encouraging people to spend more time outside understanding the world around them. OPAL wants to get everybody involved in exploring, studying but most of all enjoying their local environment. OPAL will be running a programme of events and activities until the end of 2012. To find out more about events in your region please visit the website:

LOTTERY FUNDED

www.OPALexplorenature.org

Photographs by: Martin Head¹, Simon Norman⁴, Louise Parker⁴, Taxt by: Martin Head¹, Nick Voukoulis¹, James Bone¹, Laura Edwards¹, Elizabeth Stevens¹, Dedan Baradiough², Tatiana Boucard³, David Jones², Paul Eggleton², Stephen Brooks², Simon Norman⁴, Louise Parker⁴, Rebecca Farkey⁴, Mark Dowding⁴, Linda Davies¹, Cardina Bechariou^{1, 1} Imperial College London, ² Natural History Museum, ³ Environment Agency, ⁴ Field Studies Council.

Earthworm types

- Red worms vertical burrowers and surface living
- Pale (+green) worms soil feeding
- Stripy worms compost worms

