Soil & Nutrient Network

Moray 1st Meeting Balnellan, 23rd July 2018

Soil & Nutrient Network What is it about?

- Soil Management
- Targeted Nutrient Use
- Improving Efficiency
- Minimising Losses to the Environment
- Improving Soil Structure
- Improving Soil Biodiversity
- Reducing the Risk of Diffuse Pollution
- Making the Best Use of Organic Manures

The Farm

First Meeting

- ☐Soil Analysis
- □ Compaction
- ☐ Soil Structure & Texture

Programme:	First Meeting Agenda			
10.00 – 10.20	Welcome & Introduction	James Milne & Aileen Buchanan		
10.20 – 10.50	Soil Analysis and how to interpret the results	Aileen Buchanan		
10.50 – 12.00	Compaction, Soil Structure and texture In field	Gavin Elrick		
12.00 – 12.15	Tea/Coffee and networking			
12.15 – 12.45	Equipment to improve soil structure	Gavin Elrick		
12.45 – 1.00	Discussion and what to cover at future meetings	Aileen Buchanan		
1.00 – 2.00	Feedback forms, lunch and networking			

Soil Analysis

Why soil sample?

 Provides information about the pH and nutrients in the soil

- Highlights areas requiring improvement
- Allows targeting of inputs to avoid over and under application, optimum yields and profitability

When to sample?

- Any time of year but September to February best, say every 4 -5 years
- Not within 2 years of lime applications
- Not within 12 weeks of fertiliser or organic manure applications

Where to sample?

- Large fields should ideally be sub-divided in 4ha (10acre) units
- Separate samples for distinct areas
- Avoid sampling "hot spot areas"

How?

Traditional

GPS

What for?

Ru gives pH, P, K, Mg, Ca & Na

 Other elements can be added e.g. Co, Cu, B,S and Mn

Also organic matter (LOI)

It is important to know which method of analysis has been used

 Different methods will extract different amounts of the nutrients

 The modified Morgan's method is recommended for soils in Scotland

Results

Determination	Result	Units	Status
рН	6.1		
Lime req (Arable)	2.0	t/ha	
Lime req (Grass)	0.0	t/ha	
Extractable Phosphorus	5.93	mg/l	M(-)
Extractable Potassium	280.0	mg/l	High
Extractable Magnesium	76.50	mg/l	Mod
Extractable Calcium	1500	mg/l	
Extractable Sodium	25.20	mg/l	
Extractable Sulphur	7.0	mg/l	Mod
Extractable Copper	3.21	mg/l	Mod
Organic Matter (LOI)	7.42	%	

Summary

Farm Sampled: Balnellan

Batch Number: ASD-2018-3937

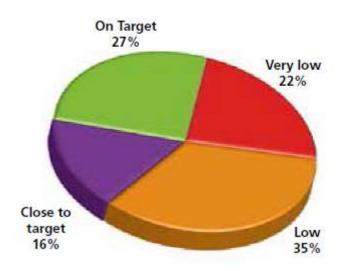
Report Date: 09/07/2018

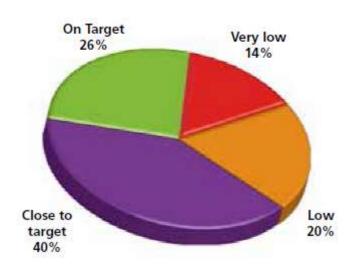
SAC	SAC Status	Extractable Phosphorus	Extractable Potassium	Extractable Magnesium
Scales of	VL	0 - 1.7	0 - 39	0 - 19
Interpretation, results in mg/l	L	1.8 - 4.4	40 - 75	20 - 60
	M-	4.5 - 9.4	76- 140	61 - 200
	M+	9.50 - 13.4	141 - 200	61 - 200
	Н	13.5 - 30.0	201 - 400	201 - 1000
	VH	> 30.0	> 400	> 1000

			Lime Re	quired	ed Extractables			
			Arable	Grass	Р	K	Mg	
ASD Ref	Field Name/Ref	рН	t/ha	i ,	mg/l	mg/l	mg/l	
18007534	14	6.1	2.0	0.0	5.93 (M-)	280.0 (H)	76.50 (M)	
18007535	17	6.2	0.0	0.0	7.06 (M-)	163.0 (M+)	96.00 (M)	
18007536	18	6.1	2.1	0.0	6.60 (M-)	261.0 (H)	196.0 (M)	
18007537	20	6.0	2.7	0.0	9.35 (M-)	169.0 (M+)	131.0 (M)	

 When levels in the soils are known applications can then be worked out using the SRUC Fertiliser Technical Notes

 In Scotland the optimum soil nutrient status for P, K and Mg is moderate for most crops

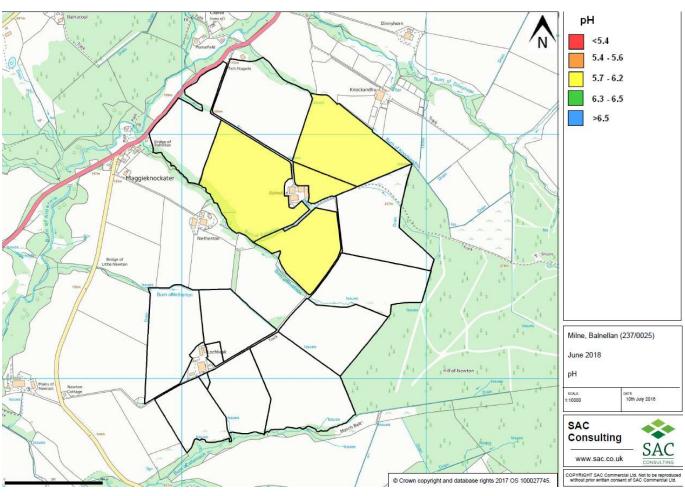




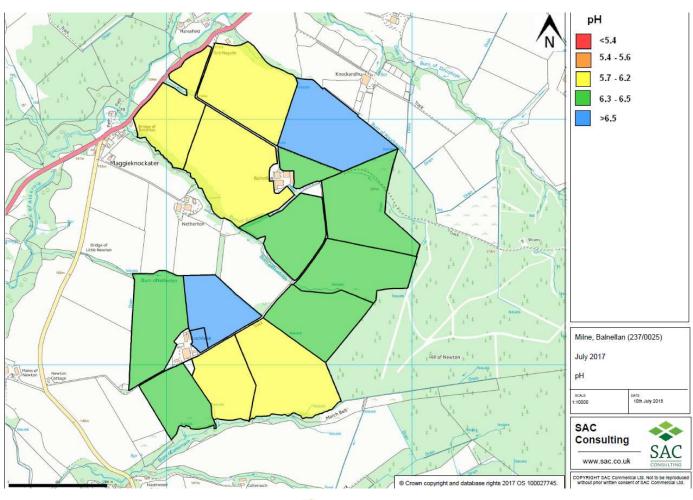
Grassland soil pH

Arable soil pH

 The majority of soils are being managed below optimal pH status



pH June 2018



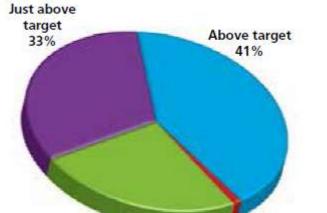
pH – July 2017

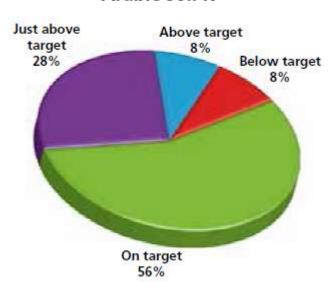
pH

Aim for optimum

mineral soil - cereals 6.0 to 6.2 grass 6.0

organic soils – cereals 5.7 to 5.9 grass 5.3 to 5.5



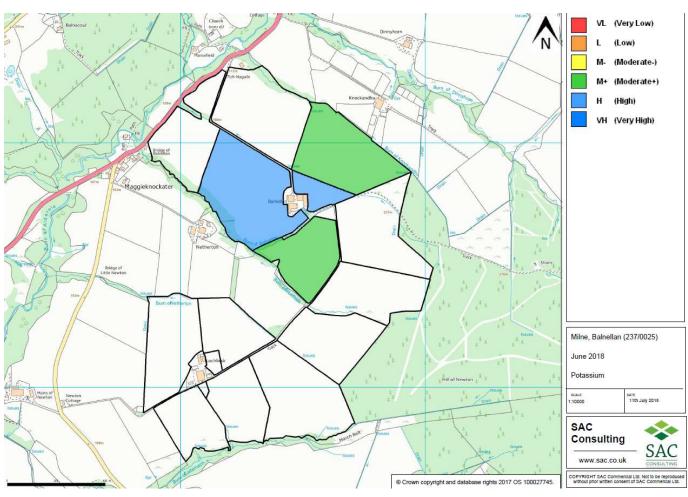

Grassland soil K Just above target

On target

25%

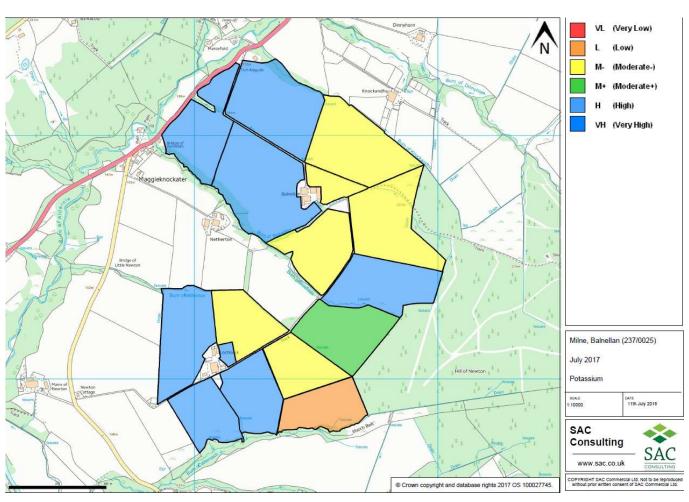
Arable soil K

 Farmers that at or above target could save around £43/ha by making better use of soil K reserves



Below target

K – June 2018



K – July 2017

Potash

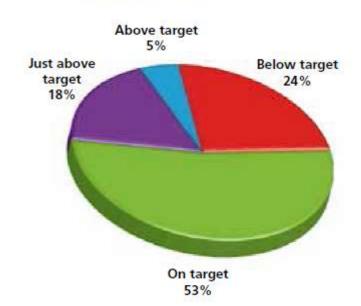
Promotes root development

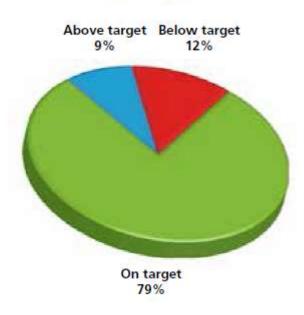
- Gives strength and stiffness to whole plant
- Clover more sensitive than grass
- Considerable recycling if grazed

Conserved Grass

Offtakes can be considerable

- Soil reserves can quickly become depleted especially on light soils
- Rule of thumb apply 2/3 the amount of nitrogen

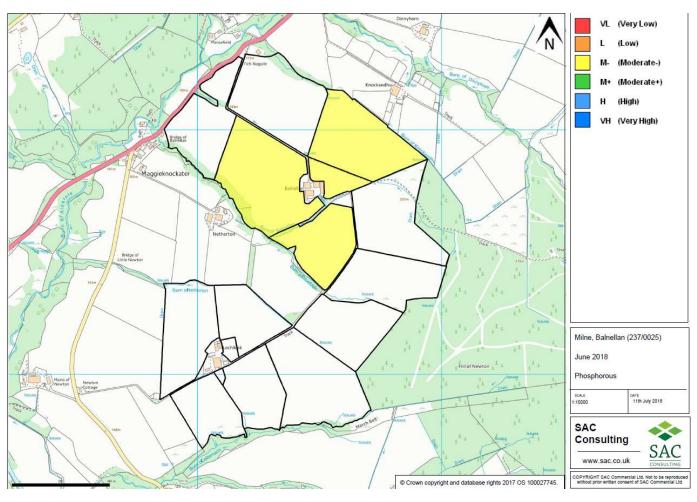




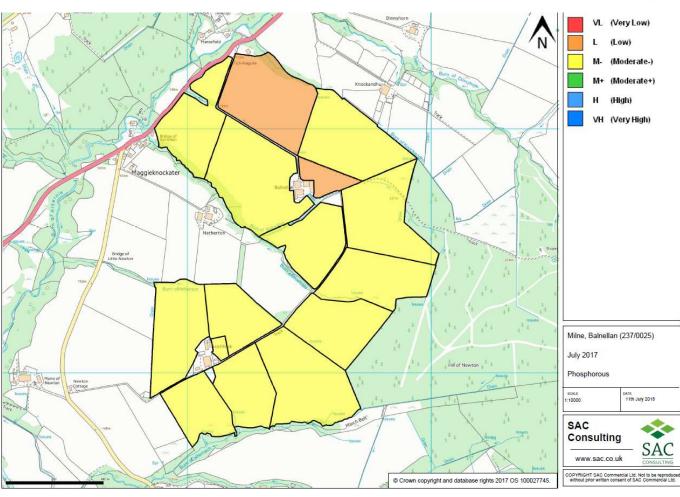
Grassland soil P

Arable soil P

 Farmers that are at or above target could save around £12/ha by making better use of soil P reserves



P - June 2018



P – July 2017

P

 Over use of P can lead to phosphorus loss from agricultural land to freshwater and impair water quality

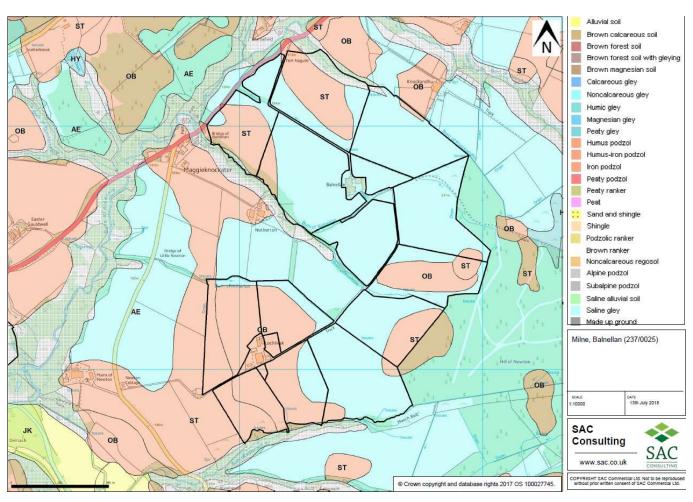
 Helps root development, early growth and ripening of seeds

Clover more susceptible to deficiency than grass

Sulphur

- Atmospheric deposition declining
- Therefore S deficiency becoming more common

 The best guide for S deficiency is soil type and location



Soil Map

- 3 meetings over 2 years
- Today we covered:- soil analysis, compaction, soil structure and texture
- Next meeting is on 5th November
 Topics include:- soil biodiversity & organic manures including distillery by-products

Ideas & Issues

Over to you

Thank You

