

Minerals and Trace elements

North East Organics Discussion Group Webinar 28th August 2020

David McClelland (Norvite) & Mary Young (SAC Consulting)

Topics to cover

SR FARM ADVISORY SERVICE

- Mineral Requirements
- The value of forage mineral analysis and understanding the supply from
 home produced feeds
- What is an 'organic' mineral? Clarify the difference between organic approval and organic mineral source
- Case studies covering some specific mineral & trace element imbalances
- How to solve mineral problems and manage a derogation request

Mineral Requirements

Minerals and vitamins are components of a balanced daily ration

Roles of Minerals and Vitamins

Mineral	Role	Notes
Calcium	Bone & muscle function	Cereals generally poor sources, grass generally adequate
Phosphorous	Bone	Forages tend to be low (particularly late in the season). Distillers grains, and protein supplements high
Magnesium	Bone & nerves	Deficiency can occur when stock on lush grass, high N and K fertiliser increases risk
Salt (Sodium Chloride)	Body Fluid	Need constant supply due to little storage. Stock will consume more salt when on good silage compared to mature silage or high concentrate diet.

Role of Minerals and Vitamins

- Trace Elements
 - iron, copper, manganese, cobalt, zinc, iodine, selenium
 - metabolism
 - enzyme activators
- Vitamins
 - -vitamin A, D₃, E, B₁₂, B₁, biotin
 - metabolic function
 - antioxidant

Key minerals and vitamins for sucklers

- Magnesium
 - Lock up effect of potassium
 - Staggers
- Iodine

7

- Still born calves, poor growth rates, fertility (irregular oestrous)
- Selenium/vitamin E
 - Iodine link, muscle weakness, retained cleansings, fertility
- Copper
 - Anaemia, infertility, poor performance
- Cobalt
 - Rumen production of vitamin B12
 - Energy requirement in rumen and animal

Mineral Nutrition is a balance

* * * * * * * The European Agricultural Fund for Rural Development Europe investing in rural areas

Balancing requirement and supply

Requirement

- Maintenance
- Production (liveweight gain, milk yield)
- Pregnancy
- Environment
 - Housing
 - Climate
 - Stress
- Requirements based on dry matter intake
- Published data
 - Limited & old

- Basal feed- e.g. grass, mixed sward, legumes
- Compound feeds
- Rumen metabolism vitamin B12
- Additional supplements
 - Powdered
 - Buckets
 - Licks
 - Boluses
 - Drenches
- Antagonists
 - Block uptake e.g. K and Mg, Mo and Cu
- Supplement sources differences in availability

Forage Analysis

How much does a forage mineral analysis cost?

- A. £10
- **B. £20**
- **C. £50**
- D. It's free

Grass Minerals

Which factors affect forage mineral content?

- A. Soil pH
- **B.** Pasture biodiversity
- **C. Geographic location**
- **D. All of the above**

Natural Sources of Minerals

Plant Type	Examples	Mineral Content
Legumes	White clover, red clover, Lucerne, sainfoin	 High in macro mineral - calcium, phosphorous, magnesium Higher than grass in trace elements copper, zinc and cobalt
Herbs	Chicory, plantain	 Higher in macrominerals than grasses and legumes

Herbal leys

Mineral Content (g/kgDM)	Chicory	Plantain	Perennial Ryegrass	*Requirements of Pregnant Suckler Cow	*Requirements of 30kg lamb +250g/day
Calcium	14.9	16.6	6	2.1	4.2
Phosphorous	3.4	2.8	3.6	1.2	3.5
Sodium	2.1	8.1	2	0.7	0.7
Potassium	36.4	16.1	20	6	4
Magnesium	2.8	3.2	2	1.2	1.2

*Critical minimum requirements don't account for antagonism, need to look at whole picture

OUTLINE

- What is an Organic Mineral?
- Case Studies
 - Manganese
 - Vitamin D
 - lodine

Which of the following is Organic?

- A. Salt
- B. Lime
- **C.** Vitamin E
- **D.** Water

What is an Organic Mineral?

- Time for a little Chemistry lesson? An ORGANIC substance:
- Contains Carbon
- Derived from living matter
- ANIMAL/ VEGETABLE
- Cereals/Forages
- Vitamins
- SOIL

What is an Organic Mineral?

An INORGANIC substance:

- Other elements and their salts
- MINERAL
- Calcium Carbonate/Lime
- Sodium Chloride
- Trace Elements
- SOIL

What is an Organic Mineral?

- By definition MINERALS are INORGANIC
- BUT they can be 'APPROVED NON-ORGANIC'
- By definition VITAMINS are ORGANIC
- BUT they are processed synthetically so not approved for use in organic production UNLESS a derogation, for animal health reasons, is obtained from your CB/DEFRA.
- Confused??
- always check the label and use a trusted adviser

Do 'Organic approved' supplements contain vitamins?

- A. Always
- **B.** Never
- C. By vet approval only
- **D. By derogation only**

CASE STUDY 1 – Vitamin D

- North East Organic Farm Suckler & Sheep
- 2016 weak/broken bones @ lambing
- Specific group of hoggs with Ca/Vit D deficiency
- Vet & nutritionist requested a derogation for vitamins to be added to the mineral
- Longer-term ewe lambs sheared before tupping
 - Increased exposure of skin to sunlight?
 - -Vit D is the 'sunshine' vitamin so more Vit D
 - 2020 lambing Vits removed without issue.

CASE STUDY 2 – Manganese

 Congenital Chondrodystrophy of Unknown Origin (CCUO), Long Bone Deformity or Bulldog Calves

CASE STUDY 2 – Manganese

- Cause is uncertain
- Risk factors have been identified
 - Silage only diets
 - Change in diet
 - Stress
 - Month 4-5 of pregnancy
- Is this more prevalent on organic farms?
- WHY?

CASE STUDY 2 – Manganese

- Mn essential in bone development
- Canadian study in pregnant suckler cows, fed 3 forages (Hay, Silage, Red Clover Silage)

	HAY	SILAGE	RC SILAGE
Forage (Mn)	Low	Medium	High
Blood (dam)	High	Medium	Low
% calves CCUO	0	28	38

 Organic approved minerals generally low/zero Mn – has become the norm.

CASE STUDY 3 – Iodine

- Prof T Boland, UCD, over supply of lodine caused poor colostrum uptake (FPT) in sheep
- High incidence of Failed Passive Transfer (FPT) in **suckler** & **dairy** herds is lodine a problem?
- Pilot study Moredun/ Norvite/ LHS, Spring 2018
- 8 suckler farms (cont x) recruited across Scotland:
 - -2 Orkney, 3 N/East, 1 Perthshire, 2 Lanark
 - Mineral budgets including forage

ZST (antibody absorption)

CASE STUDY 3 – Iodine

- Supplementation for good and justifiable reasons
- Can you have too much of a good thing?
- YES!!!
- Monitor and manage iodine status
 - ensure all supplement sources are accounted for eg boluses, buckets, compounds etc
 - -most 'risky' period in the 8 weeks prepartum
- Specific issue with Iodine, however all TE need to be in balance

Case Study

• Scottish Government funded project on 12 spring calving suckler herds

Test Results (pre-calving)

% of parameters outwith normal range (pre-calving) Low 40.0 36.8 35.0 30.0 25.0 % of samples 20.0 Low 15.0 9.5 10.0 Low 5.0 2.0 0.0 0.0 Phosphorus Magnesium Copper Selenium **Blood** measure

Magnesium in pregnant sucklers

Magnesium – if low pre calving:

- Helps cows mobilise calcium reserves meet demand for lactation
 Reduces milk fever risk
- Important for muscle contraction and birthing process
 - Minimise slow calvings
 - Minimise retained cleansings
- If low post calving:
 - Staggers risk

Test Results (post-calving)

% of parameters outwith normal range (post-calving)

Plasma Iodine (reference range 50-105µg/litre)

Farm	lodine (μg/litre) Pre-calving	lodine (µg/litre) Post-calving	Trace Element Bolus
1	108	-	Yes
2	>150	>150	Yes
3	97	137	Yes
4	92	-	No
5	>150	77	No
6	>150	>150	No
7	106	93	No
8	>150	>150	No
9	>150	>150	No
10	-	64	No
11	>150	>150	No
12	109	105	Yes
	SAG	С	

CONSULTING

Identifying a deficiency and managing derogations

Identifying a deficiency - Building up a picture

How to solve mineral issues

• Estimate contribution from forage

Mineral	UK	Norvite	%
Sodium	0.31	0.23	0.74
Copper	7.45	5.70	0.77
Cobalt	0.21	0.09	0.43
Selenium	0.05	0.03	0.60
lodine	0.86	0.63	0.74
Molybdenum	1.47	1.58	1.07

Target specific/non-specific performance issues

Managing derogations

- Work with trusted advisers
- Build an evidence base
- Justify need and work on mitigations
- Derogation reviewed annually
- HERD/FLOCK health plan

Thank You

