

Renewables & Energy Efficiency

Jim Campbell **Environment Team** SAC Consulting 2 Technopole Centre **Bush Estate** Penicuik Midlothian EH26 0PJ 0131 603 7503 jim.campbell@sac.co.uk

FARM

ADVISORY

SERVICE

SR DP

COSTS/ASSETS

Energy Costs

- Electricity
- Red Diesel
- White Diesel
- Petrol
- Kerosene
- Imbedded Energy
 - Fertiliser
 - Feed

Energy Assets

- Wind
- Water
- Crops
- Crop residues
- Slurry/FYM
- Land
- Underground

Energy auditing

- 1. Quantify existing energy usage
 - Keep records
 - Bills can be difficult to interpret and may be estimated
- 2. Identify usage with specific operations
 - Install additional meters on individual buildings/equipment
 - Record tractor and vehicle fuel usage against tasks

Energy auditing

3. Benchmark

- Relate energy usage to production or to stock numbers or hectares.
- Electricity consumption in dairying ranges from 200 to 400 kWh/cow/year
- Average fuel consumption for ploughing to 200mm is around 15 l/ha
- A typical farrowing house will use 8 kWh per pig produced, the most efficient installations use only 4kWh

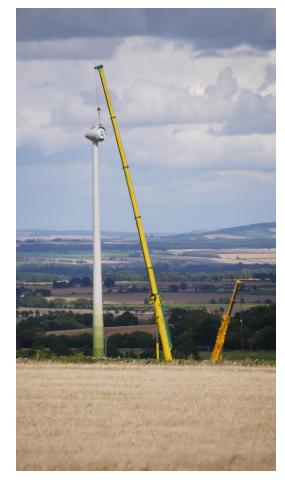
Energy auditing

- 3. Identify potential savings
 - Upgrading of buildings
 - Modification/replacement of equipment
 - Alteration of management practices
 - Establish costs and payback periods for various options.
 - Implement zero and low cost options immediately.
 - Plan ahead for other viable options where investment of time and money are required.
- 4. Information compiled will inform decisions on investment in renewables

Farm scale renewables to date

- Scotland's farmers have been at the vanguard of the country's move to de-carbonise the energy sector.
- Almost all on-shore technologies require at least some land for their deployment
- Diversification of businesses
- Additional income stream unrelated to crop and livestock prices
- Many challenges along the way
- Now an integral part of many farming businesses

Renewables - the story so far



- We have had a period of high incentive payments
 - Feasibility of schemes have been judged more on the amount of FITs, ROCs, RHI that they will generate
 - Less on the value of the energy they produce
 - Distortion in the market

The European Agricultural Fund for Rural Development urope investing in rural area:

cottish Government iaghaltas na h-Alba ov.scot

Renewables going forward

- Incentive payments are now much lower and may drop to zero in the near to medium term
 - The value of the energy produced can be better appreciated and realised
 - Any increase in oil prices will improve viability of renewables
- Large scale renewables will have to compete with other large scale technologies
- Feasibility of small scale renewables will be judged on the amount of local demand they can supply

Maximise the value of energy produced

50 kW PV example

	FIT rates for Nov 2015 installation				Proposed FIT rates for Jan 2017 installation			
	25% on site usage		100% on site usage		25% on site usage		100% on site usage	
	£	% of total income	£	% of total income	£	% of total income	£	% of total income
Generation tariff	4802	65	4802	53	1474	36	1474	26
Export tariff	1546	21	0	0	1546	38	0	0
Electricity savings	1062	14	4250	47	1062	26	4250	74
Total annual income	7410	100	9052	100	4082	100	5724	100

Scottish Government Riaghaltas na h-Alba gov.scot

What projects can still be viable

ottish Government aghaltas na h-Alba

- High yielding sites
 - Maximise return on capital investment
- Low cost
 - Simple installation
 - Low grid connection cost
- On- site usage
 - Offset cost of conventional energy

Wind example

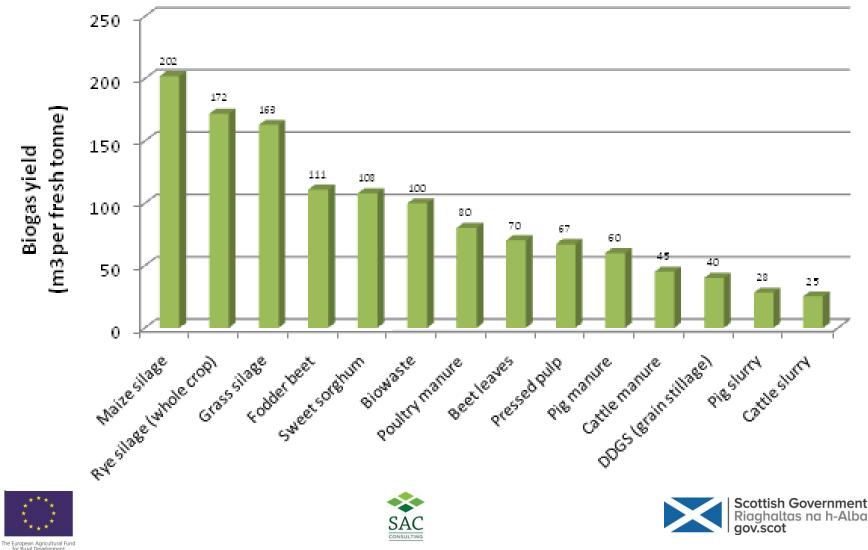
	50 kW wind turbine					
Average wind speed	5.5	7	8.5			
Yield	120568	186238	237800			
20% 0n site usage						
Generation tariff (£)	9959	15383	19642			
Export tariff (£)	4440	6858	8757			
Savings (£)	2411	3725	4756			
Total annual benefit (£)	16810	25966	33155			
100% 0n site usage						
Generation tariff (£)	9959	15383	19642			
Export tariff (£)	0	0	0			
Savings (£)	12057	18624	23780			
Total annual benefit (£)	22016	34007	43422			
Installed cost	£180k to £300k					
Jan 2017 tariff rates						

Micro-hydro, Kames Fish Farm

- High rainfall area = high yielding site
- Relatively low construction and connection cost
- Local demand from fish farm
- Low carbon footprint a marketing opportunity

Anaerobic Digestion

- Crop based feedstock can still provide reasonable return where;
 - Maximum benefit is obtained from electricity and heat or from grid injection
 - Installation and grid costs are relatively low
- However;
 - Use of crop likely to be limited for new installations from 2017 following proposals to change the RHI & FIT regulations
 - FIT Deployment caps greatly exceeded and projects queued for registration



Biogas yields

for Rural Development Europe investing in rural areas

Slurry/FYM only AD

- May become viable where;
 - Packaged plants become available at lower cost
 - Existing slurry storage can be used
 - Grid connection cost is minimal
 - Electricity is used to offset purchased power
 - Heat is used to offset purchased oil
 - Oil price goes back up
 - Enhanced incentives for this type of project?

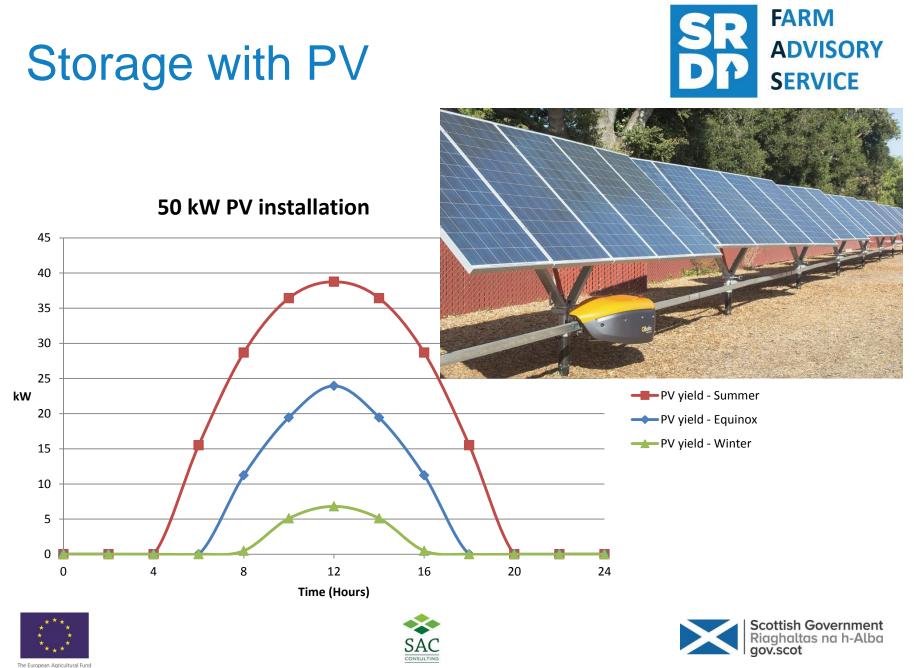
- Medium scale biomass heating installations are still a viable option but further RHI reductions likely.
- Efficient well designed systems critical.
- Changes proposed from next year will remove the tariff bands and introduce tiering for all scales of installation.

Biomass CHP

- Viable where there is an on-site demand for heat and power
- 1.8 ROC/MWh for electricity produced
 - Ending March 2017
 - No proposal to include Biomass CHP within the FIT
 - CfD likely to be dominated by wind
- RHI for heat used
 - Proposal to tier from next year

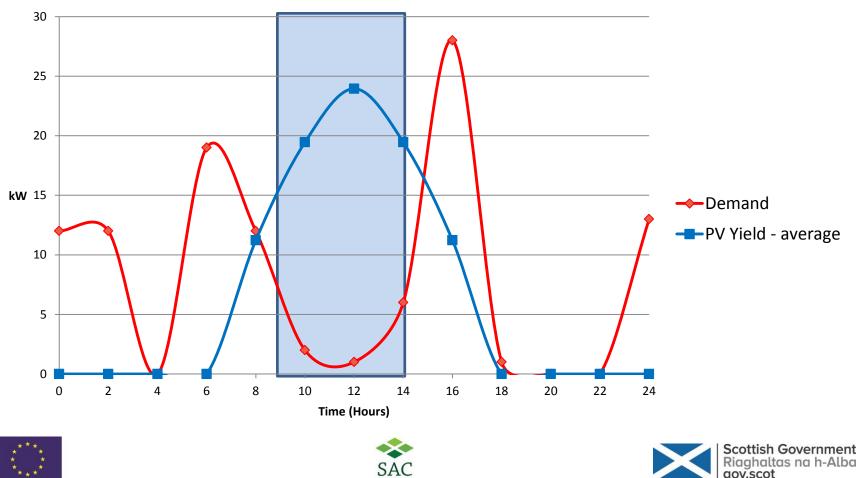
Storage

- Storage technology expensive although costs are falling
- On-site storage of intermittent generation for export to grid via constrained connection.
 - Unlikely to add up due to increased costs and poorer efficiency than unconstrained site unless a premium can be obtained for time of supply.
- On-site storage of intermittent generation for on-site usage.
 - More likely to become viable as storage equipment price drops.



40 kWh Battery

When fully charged will supply: 10 kW for 4 hours or 5 kW for 8 hours

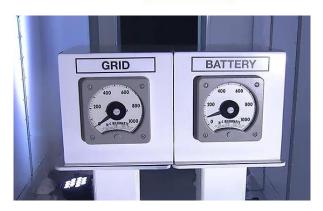


The European Agricultural Fund for Rural Development Europe investing in rural areas

Yield/demand profiles

50 kW PV installation

ADVISORY Solar PV with storage SERVICE Annual Average Average daily production from 50 kWp PV array 112 kWh 37 kWh Direct usage ۲ Export or available to store 75 kWh May Average Average daily production from 50 kWp PV array 188 kWh Direct usage 25 kWh • Export or available to store 163 kWh Current cost of storage for 100 kWh £30,000 £5.31 Saving on an average day £1940 Annual saving (needs to be confirmed with on site data) ٠



FARM

Battery storage

SR FARM ADVISORY SERVICE

- Could be viable if;
- Energy price goes up
- Storage costs go down

- Energy profile at site maximises benefit of storage
- Used to avoid high peak time charges
- Emergency back up
- Short term demand response required

Hydrogen production

- Hydrogen production by electrolysis
 - Can be stored on site or fed into the gas grid as storage for later conversion back to electricity or to provide carbon neutral gas
 - Can be used as a transport fuel in cars, buses, ferries and tractors?
 - Fuel cells can turn hydrogen back to electricity
 - or internal combustion engines running on hydrogen can be used

Picture courtesy of New Holland Scottish Government Riaghaltas na h-Alba

Green Hydrogen

- Green H₂ market is currently limited but there is scope to develop
- Hydrogen production needs to be planned along with hydrogen uses
- Most promising initial market
 - Transport fuel (Taxed)
 - Large public and private sector organisations with Carbon reduction commitment (CRC)
- Vertical integration of the supply chain is required
- Production of fertilizer from green
 H₂ has potential to hugely reduce carbon inputs to agriculture

Local demands

Opportunities exist to maximise the value of energy produced by supplying heat or power to third parties local to farm businesses e.g.

- Water treatment and sewerage works
- Public buildings
- Hotels
- Commercial properties
- Food processing businesses

Savings for the third party and increased income for the generator.

Integration with existing supplies needs careful consideration and close cooperation but mutual benefits are possible.

Efficiency and demand management

- Opportunities to increase the value of renewable generation by better integration with farm businesses exist
- Improving the efficiency of equipment and operations can allow a higher proportion of on-site demand to be met from renewables or leave more energy for export.
- Manage heating, cooling and processing operations to utilise wind or solar energy when it is available.
- Some operations can be easily automated to maximise the use of renewables, manual intervention will be required for others.

Electric vehicles are coming!

Rapid charge point

80% charge in 30 mins

Jaguar I-PACE 0-60 mph in 4 seconds 310 miles range

Scottish Government Riaghaltas na h-Alba

Conclusion

- Be aware of your energy costs
- Be aware of your renewable assets
- Use energy as efficiently as possible
- Add value to renewable generation where possible
- Be aware of developments in the energy industry including new business models
- Think long term

Want more information?

SAC Consulting's Environment Team:

2 Technopole Centre Bush Estate Penicuik Midlothian EH26 0PJ 0131 603 7500

Or via your local SAC Consulting office.

Thank You

