

Nitrogen Topic

- Greenhouse Gas Emissions in Agriculture
- Protected Nitrogen Fertiliser
- SRUC Nitrogen Trials at Cauldshiel

GHG Emissions

Five main sources of Agri emissions:

- 1. Fuel combustion carbon dioxide
- 2. Livestock ruminants produce methane
- 3. Soils nitrous oxide and carbon dioxide
- 4. Nitrogen fertiliser manure and slurry nitrous oxide
- 5. Cropland conversion release of carbon from grassland when ploughed

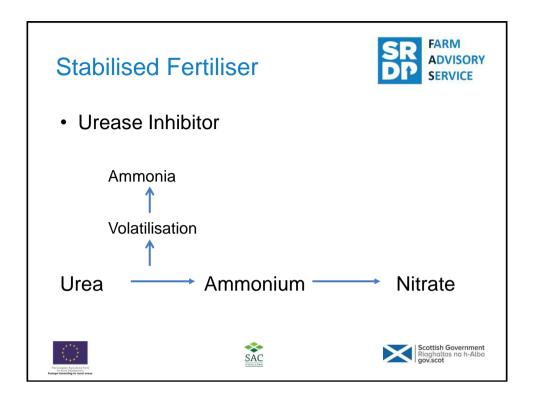
GHG Emissions

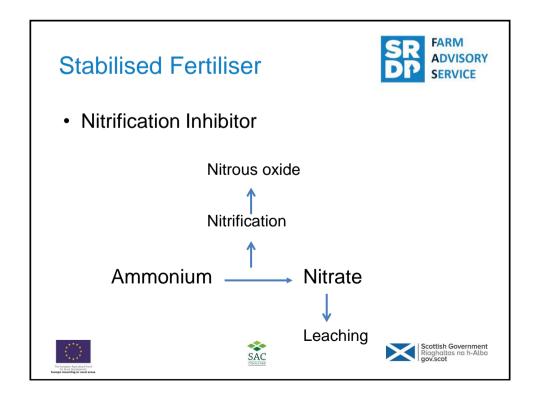
The 3 gases have different impacts
Expressed as carbon dioxide equivalents (CO2e)

- Carbon Dioxide =1 CO2e
- Methane = 25 CO2e
- Nitrous Oxide = 298 CO2e

- Good nitrogen management
 - reduces losses into environment
 - reduces greenhouse gas emissions
 - improves efficiency of crop response to available nitrogen
 - good for profit

Stabilised N Fertiliser


Stabilised Products feature


- Urease Inhibitor
- or
- · Nitrification Inhibitor

Conclusion

- Nitrification inhibitor, reducing nitrous oxide emissions. Works well with ammonium based fertilisers in arable soils
- Urease inhibitors reduce ammonia emissions
- Yield effects small or non-existent and will be offset to some extent by more efficient N use

Benefits

- Good for reducing GHG emissions
 e.g. 5% improvement
 200kgN = 10kgN not lost to environment
 10 x 298 CO2e = 2,980 CO2e/ha
- Can safely apply large single application?

Benefits

 Reduce the number of applications saving time and money?

But

Cost benefit needs to be considered

Nitrogen Trials Work in Progress

Wheat Diversity Trial
 Comparing varieties from different NABIN grps

Are there differences between wheat varieties are more efficient at utilising nitrogen?

Zero N rate also used to pick up difference in varieties ability to scavenge residual soil nitrogen

Nitrogen Trials Work in Progress

2. Remote Sensing Work (SRUC & UOE)

Anna Florence

Remote monitoring of crop development, growth and nitrogen use.

Method: Drone and satellite imaging


Nitrogen Trials Work in Progress

- 3. Grain Nitrogen Supply (AHDB + Scot Gov)
- Improve our understanding of supply of nitrogen to heads
- Applicable to different market sectors for low and high grain nitrogen requirements
- Trial evaluating different rates at different timings

Manipulating grain nitrogen also relevant to livestock grower.

- Grain N% x 6.25 = Crude protein %
- 1.45% N = 9% crude protein
- 2.0% N = 12.5% crude protein
- · Reduce purchased protein requirement

