#### Soil pH and Nutrients



















#### Soil Analysis



- A sampling tool (a soil auger or corer is best, but a spade can be used)
- A clean bucket
- Clean plastic sealable sample bags and a waterproof marker
- In a W pattern take at least 20 sub samples 10-20cm depth to make up one sample about 500g in weight







## **Example Soil Analysis**



| рН              | 5.9     |      |
|-----------------|---------|------|
| Lime req Arable | 5t/ha.  |      |
| Lime req Grass  | 0       |      |
| Ext Phosphorous | 3.5mg/l | Low  |
| Ext Potassium   | 116mg/l | M(-) |
| Ext Magnesium   | 301mg/l | High |







#### soil pH



- Soils below about 5.6 have higher soluble aluminium which inhibits growth of susceptible plants.
- Optimum pH Levels

Grassland
5.8-6.0

- Arable 6.2-6.5

Peaty soils – Plants can tolerate a lower pH







#### Effect of low pH Barley





 Lime deficiency in Barley – stubby roots / Yellow leaves / stunted plants







#### Too High pH



- Can reduce availability of certain trace elements
  - Eg Mangenese deficiency in barley
  - Pale leaves intervenal brown spots









#### Raising pH



- Consider Neutralizing Value and fineness of limestone
- Common lime sources are Magnesium limestone and Calcium limestone
- Spread 6-12 months before sowing a susceptible crop if pH is very low
- Max applications would be 7.5t/ha. in one application







#### **SRUC Technical Note**



# Technical Note TN656



January 2014 • All

Soils information, texture and liming recommendations.

SUMMARY





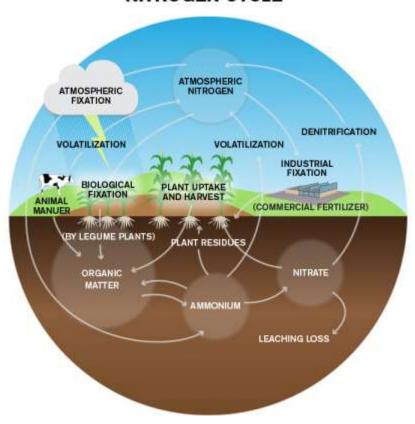


#### Nitrogen



- Plants need nitrogen to make chlorophyll and amino acids.
- Sources are
  - Organic N eg manures / soil residues
  - Inorganic N eg Ammonium Nitrate 34.5% N
  - Atmospheric N








### Nitrogen Cycle



#### NITROGEN CYCLE









#### Potassium (K)



- "Potash" essential nutrient with many functions
- Animal manures high in K
- Crops remove high levels of K
- Grazing animals return most of the K
- Very soluble
- Luxury uptake







#### Phosphorous



- Essential nutrient particularly for root development
- Not as soluble as K so easier to raise levels
- Livestock farms often low in P
- Fertiliser types include acid soluble or water soluble.







#### Other Elements



- Sulphur
- Trace Elements







#### Inorganic Fertilisers



- Can be sold as compounds
- N:P:K se 20:10:10
- Or straights
  - eg Ammonium Nitrate (34.5%)
  - Muriate of Potash (KCI) is 60% K<sub>2</sub>0
  - Triple super phosphate is 46% P<sub>2</sub>0<sub>5</sub>







#### Organic fertilisers



# Technical Note TN650



April 2013 • Elec

# Optimising the application of bulky organic fertilisers







#### **Nutrient Planning**



- Crop requirements SRUC technical notes
- PLANET Scotland software
- Take account of
  - previous crop,
  - removal of P&K,
  - expected yield,
  - -soil type,
  - -soil status





