

Protein crop options for Scotland with potential for more than one end-use: Intercropping as a tool

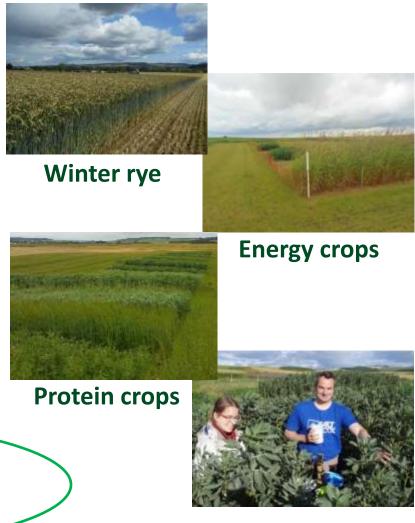
¹ROBIN WALKER, ¹CHRISTINE WATSON, ¹JOHN BADDELEY, ²OLUYINKA OLUKOSI and ³JOS HOUDIJK

¹SRUC, Craibstone, Aberdeen, Aberdeenshire, UK AB21 9YA ²SRUC, Auchincruvie, Ayr, KA6 5HW ³SRUC, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG

Leading the way in Agriculture and Rural Research, Education and Consulting

Background

- Increasing concerns from policy makers regarding food and feed security (particularly protein)
 - in Scotland, the UK and EU
- There is also a commitment towards more sustainable forms of food and energy production
- Production of protein crops for animal feed and especially human food in the UK (e.g. the grain legumes peas, beans and lupins) is often problematic
 - acceptable yield and quality difficult to achieve consistently
 - particularly tricky in the North of the UK


SRUC research on alternative crop options for Scotland

- Diverse / multi-functional end use of forage cropping systems
 - Food / feed / bedding
 - Protein
 - Replacement for SBM
 - Energy
 - Primarily around AD process
 - Environmental
 - CAP
 - N-fixing, soil improver, biodiversity

Trial work on protein crops

With or without intercropping

Greening crops

Protein crops for Livestock

Rational

- Livestock production systems depend on our ability to provide sufficient quantities and quality of (metabolizable) energy and nutrients
- **Currently a great reliance on soya bean meal (SBM)**
- Can we shift from imported SBM to home grown options (in this case in Scotland)
- Forages
 - Increased protein levels in whole crop forage (silage)
- Concentrates
 - SBM replacement with home grown alternatives
 - Home-grown soya (?)

Investigation of options for plant protein production in Scotland

Demonstration of potential

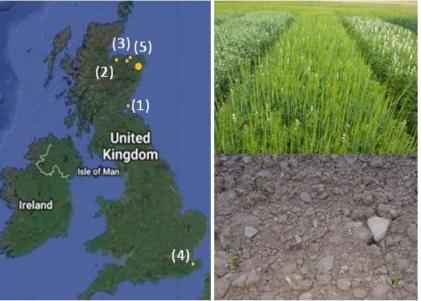
- for livestock (and human use)
- Try to encourage farmers to think about growing more protein on farm
- Typical protein crops (although still relatively minor)
 - Beans, peas and lupins
- More unusual protein crops (?)
 - Soya & lentils (& Fat hen)
- Demonstration of alternative practices
 - Intercropping (with cereal)

Approach @ "Hub site"

Based on known / suggested agronomy

- Basic approach following from previous years
 - Discussion with farmer group (EU ReMIX)
 - Sowing rate treatment in mixtures
- Yield / quality sampling regime
 - Multi-use options aimed for
 - Biomass, Silage, Combinable grain
 - Feeding value
 - Analysis of micro-silage
 - Pulse use in animal feeding studies

www.remix-intercrops.eu


ReMIX Species mixtures for redesigning European cropping systems

- ReMIX presented: by SRUC at several of their own and third party events
 - E.g. demo at Cereals in Practice, Innovative Farmers Field Labs, SOPA meetings
- Potential contacts via SRUC advisory service and other networks
- Follow up emails and phone exchanges with farmers & other interested parties (e.g. processor)
 - Conventional and organic all have experience of intercropping – 2 farmers have intercrops on both organic and conventional land
- closed Facebook Group easier flow of information

Many intercrops (all spring sown)

Central hubPeas, beans, lupins, lentils - sole cropped
(except lentil) and with spring cereal -
different ratios (60/40 & 40/60) testedSatellite farms(1) Beans & oats (O and C); Peas, OSR & oats
(C); Barley & OSR (O); Barley, strawberry clover, white clover,
yellow trefoil (C).(2)Peas & barley (O & C) - with sole pea &
barley crops.(3)Peas & wheat (O).(4)Beans & OSR (C); Oats &
clover (C); Lentils & flax (C).(5)Pea & barley (O); Pea & wheat
(O), Barley & wheat (O); Barley, wheat & peas (O); Barley, wheat,
peas & vetch (O) - with sole barley, wheat & pea crops.

UK MAP (5 farmers; 1 processor; 2 organic certification bodies; several researchers)

Next steps

- Maintain dialogue between all MAP partners
 - email / phone / Facebook
- Adapt and clarify the management with each farmer individually
- Determine their needs for research support
- Determine ability to collect basic data for comparison
- Arrange link up meeting(s) ideally in summer
- RNAS and CiP events (and others)

Peas - spring barley

Pea sole cropped

Pea-barley intercrop

Lupins - spring barley

Lupin sole crop

Lupin-pea intercrop

Beans - spring barley

Faba bean sole crop

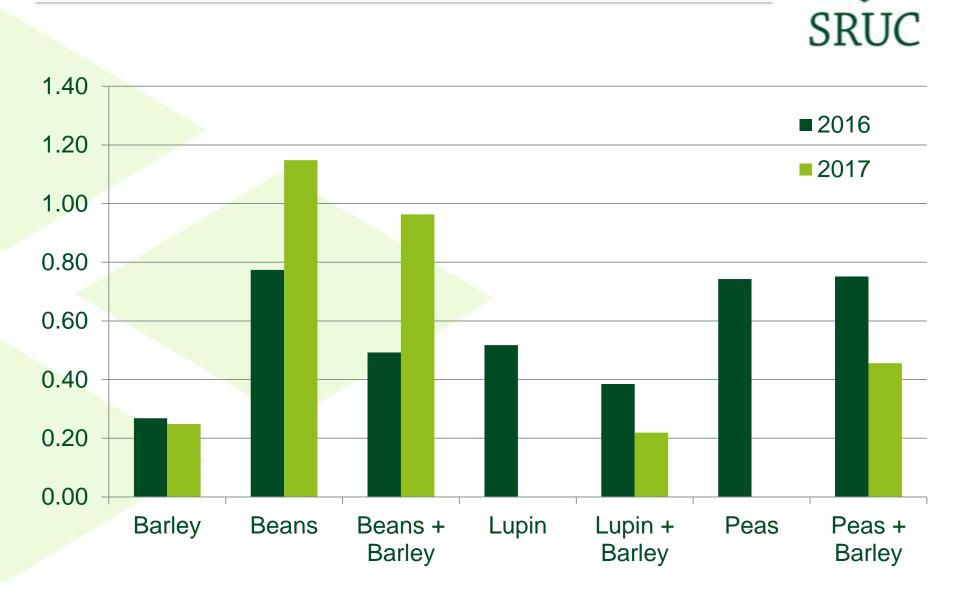
Faba bean-barley intercrop

Lentils with spring oat scaffold

Anicia

Gotland

Protein content of grain (2016 & 2017)


2016			
Croin Logumo	% Drotoin	C4Dov	SEM
Grain Legume	Protein		
Beans	27.0	1.26	0.63
Beans + Barley	27.0	1.23	0.61
Lupin	30.2	2.93	1.46
Lupin + Barley	32.3	0.13	0.09
Peas	23.8	0.50	0.25
Peas + Barley	23.0	0.56	0.28

2016			
	%		
Cereal	Protein	StDev	SEM
Beans + Barley	13.5	1.26	0.73
Barley	8.9	0.66	0.33
Lupin + Barley	10.9	0.29	0.21
Peas + Barley	11.3	0.16	0.08

2017			
	%		
Grain Legume	Protein	StDev	SEM
Beans	25.5	0.33	0.17
Beans + Barley	26.7	0.10	0.05
Lentil + Oat High	25.1	0.97	0.48
Lentil + Oat Low	28.1	0.65	0.33
Lupin + Barley	32.5	0.29	0.14
Peas + Barley	23.0	0.09	0.04

2017			
	%		
Cereal	Protein	StDev	SEM
Beans + Barley	9.3	0.62	0.31
Barley	8.9	0.66	0.33
Lentil + Oat High	10.9	0.26	0.13
Lentil + Oat Low	10.7	0.75	0.38
Lupin + Barley	9.8	0.33	0.17
Peas + Barley	11.3	0.78	0.39

Protein Yield (t/ha)

Current "Hub" Trial

Drilled end April 2018

Leading the way in Agriculture and Rural Research, Education and Consulting

Spring Barley (sole)

Lentils & Oats (low & high seed rate)

100% Lupin

60% Lupin 40% Barley

40% Lupin 60% Barley

100% Lupin

60% Lupin 40% Barley

40% Lupin 60% Barley

100% Pea

60% Pea 40% Barley

40% Pea 60% Barley

100% Bean

60% Bean 40% Barley

40% Bean 60% Barley

How do these crops fare in terms of feed value?

Leading the way in Agriculture and Rural Research, Education and Consulting

Pulses and older pigs

Provided that commercial availability constraints can be overcome: peas and faba beans are viable home grown alternatives to SBM in nutritionally balanced diets for grower and finisher pigs

Crop quality

- Feeding value of micro-silage being assessed
 - NIR (whole crop scan):
 - DM, D-value, ME, CP, NDF, WSC, Oil Ash, TFA, pH, Lactic Acid, Ammonia
 Underpinned with wet chemistry

- Making use of beans and lupins from the field trials
 - Feeding trial (broilers)
 - Antimicrobial assessments (in vitro and in vivo)

- Great potential to utilize more home grown protein sources, based on historic evidence and current work going forward
- Optimal level of bioactive alternative feed ingredients for more sensitive stock (broilers, weaner pigs)
- Intercropping cereals with grain legumes can lead to more reliable production of high protein food/feed in northern UK (e.g. Scotland) than sole crops
 - With additional benefits for soil and carry-over

Thanks for your attention

- Thanks to many colleagues CSS and MSRC
- and thanks to Scottish Government (RESAS) and EU ReMIX for financially supporting this work

