

Silage Analysis and Ration Planning: Benefits of knowing what you're feeding your stock

Mary McDowell
Trainee Livestock Nutritionist

Issues during winter feeding

- Forage quality variation
 - How much do you have and what is it's feed value?
 - Planning ahead and assessing stocks
 - How to cope with poor silages
 - Supplementing silages were appropriate

Every farm is different!

Variation in Forage Quality

	Pit		Bale	
	Average	Range	Average	Range
DM (%)	28	13-67	36	16 - 69
D Value (%)	67	50 -77	66	50 – 77
ME MJ/kg DM	10.7	8 -12.3	10.5	8 -12.3
CP (%)	10.1	5.3 – 15.9	10.1	6 – 16.5
рН	4.3	3.6 - 6	4.5	3.9 – 5.6

Silage Analysis:

Dry Matter (g/kg)* 235 D-value (%)* 68.9 ME (MJ/kg DM) 11.0 Protein (g/kg DM)* 98 SIP (gDM/kgLW^0.75)* 90 NDE (g/kg DM)* 553	pH (NIR)* 4.3
D-value (%)* 68.9 ME (MJ/kg DM) 11.0 Protein (g/kg DM)* 98 SIP (gDM/kgLW^0.75)* 90	
Protein (g/kg DM)* 98 SIP (gDM/kgLW^0.75)* 90	Lactic Acid (g/kg DM) 41.7
SIP (gDM/kgLW^0.75)* 90	VFA (g/kg DM) 17.4
5 (g5g2 5 5)	V.Poor Poor
NDE (a/ka DM)* 553	Average
NDF (g/kg DM)* 553	Good
Sugar (g/kg DM) 30	pH VFA Ash
Oil (g/kg DM) 34	V.High
Ash (g/kg DM) 51	High
TFA (g/kg DM) 59.1	Average
PAL (meq/kg DM) 927	Low
Dogradskilit	

Degradability Characteristics

	s	a	b	С
Dry Matter	0.22	0.32	0.51	0.036
Nitrogen	0.58	0.68	0.23	0.079

^{*} The above silage results were produced using the Forage Assurance Analysis Models on fresh silage material .

Contact: I MacMillan Stornoway FRBS

Authorised by June Gay (Client Manager)

Dealing with soil contaminated silage

- Ash levels high on analysis (>10%)
- Clostridia bacteria
- Listeria bacteria
- Establish worse affected bales and avoid feeding to pregnant or lactating animals
- Dilute with better forage if it must be used
- Don't feed mouldy silage
- Remove refused silage to avoid build up of spoiled material

Why does dry matter matter?

- Dry matter is the most likely thing to vary each year
- Are you feeding enough silage?

Example: 10kg of dry matter of silage to satisfy a cow

- Wettest silage = 48kg fresh weight
- Driest silage = 16kg fresh weight

Estimating Dry matter %

- Liquid easily squeezed out by hand <20%DM
- Liquid squeezed out but takes more effort 20–25%DM
- Very hard to get any liquid out but hands feel wet >25%DM
- Can you form a ball with it, how does it hold it's shape?
- How spikey is it in your hand rougher it is the lower the energy

Energy Content of silage

To meet the needs of dry suckler cow

For example:

600kg suckler cow, 8 weeks from calving requires 83 MJ

- -9 ME silage = 38kg
- -11.5 ME silage = 28kg

Which silages cause you concern?

	A	В	С	D
DM g/kg	163	230	235	561
D Value (%)	60	58	69	66
ME MJ/kg DM	9.6	9.4	11	10.6
CP g/kg DM	118	114	98	80
SIP	72	83	90	101
Lactic Acid g/kg DM	10	51	42	10
VFA g/kg DM	0.1	27.3	17.4	9.0
рН	4.5	4.4	4.3	4.7

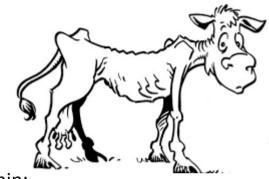
Body Condition Score

- 1 unit of BCS = 13% live weight
 =1 unit of BCS for 650kg is 85kg
- Ideally want around 2.5 BCS at calving
- If your cows are fat or thin it takes times to take off or gain condition

Knowing weight of cows

 If cows are not being fed the maintenance requirements to the correct weight they could lose condition quickly

Weight (kg)	ME (MJ)
550	59
650	67
750	74
850	81



Thin and Fat Spring Calvers near calving

Thin:

- Separate from those in fit/normal condition if possible for extra feeding
- Give them the best forage available
- Avoid overloading with concentrates
- If cow losing excess weight near to end of pregnancy
 - Could she be carrying twins?
 - Twins increase ME req. by 20-25
 MJ /day near end of pregnancy
 - Is there good access to feed
 - Other vet issues

Fat:

- Can still be losing a bit of weight right up to calving
 - Up to 0.5kg/day loss
- Meet protein and mineral requirements
- Avoid 'starvation' diets for over fat cows
 - Don't want to cause metabolic problems at calving
 - Energy still required for colostrum production

Example Pre-Calving Rations

	FAT 650kg Cow -0.5kg/day	NORMAL 650kg cow No loss or gain	THIN 650kg Cow +0.5kg/day
Silage (kg)	30	36	45
Beef nuts (16%CP)	-	-	May need some conc. Depending on silage quality
Minerals (kg)	0.15	0.15	0.15

- Rations using an average silage
- Important to have your own forage analysed

Minerals and vitamins

- Advice to provide dry cows with min/vit supplement around 6 weeks pre calving
- Deficiencies can lead to health issues for both cow and calf
 - Retained placenta
 - Slow calving
 - Milk fever
- Magnesium: in 1-2 weeks pre calving provide 100g of beef cow mineral containing 10% Mg
- lodine: Not stored in the body, must be supplied
- Selenium: Low levels can lead to poor muscle tone leading to calving difficulty
- Vitamin E:
 - Works with Se
 - Does not cross placenta so calves rely on good supply from colostrum

Buckets & Blocks

- Various buckets and blocks on the market:-
 - Feed buckets & blocks
 - Mineral buckets & blocks
- Labour saving & convenience
- Prevents bullying at trough
- Careful you aren't over supplying minerals
 - e.g. If you've boloused, feeding cake and providing mineral buckets
- They are a supplement not a cure all

Post Calving

- A freshly calved cows has to:
 - Recover from calving
 - Produce milk
 - Re-start oestrus cycle
 - Increase BCS if needed

- Milk yield peaks around 6-8 weeks post calving- coinciding with breeding season
 - Increasing BCS and ovulation will only occur if your are giving them above their req. for maintenance + milk
- Energy requirements of freshly calved cow are double that of dry cow

Nutrient Guidelines for 650kg suckler cow

	DMI (kg/day)	Energy (ME MJ/day)	Crude Protein (%DM)
Early lactation	12-14	120-130	11-12
Late lactation	9-11	85-95	11
Dry	10	75-80	9

Lactating Ration

- Need a minimum of 11% CP in overall ration
- For a 650kg cow she requires 116MJ of energy (8kg/day milk)

	Poor Silage 9ME	Average Silage 10ME	Good Silage 11ME
Silage (kg)	42	44	45
Beef Nuts (16%CP)	2.5	1.5	-
Mineral (kg)	0.15	0.15	0.15

Draff

- Draff is the fibrous reside remaining after sugars have been extracted from malted barley
- Useful high NDF feed
- Can go off quickly if not in a pit/sheeted
- Oil content can limit its use care has to be taken not to use too much
- 2-3 kg/ 100kg liveweight can be fed a day
- Must provide mineral supplement
 - Extraction with hot water removes soluble minerals (Na, K, Mg etc.)

Lactating Ration using Draff

	Poor Silage (9ME)	Average Silage (10ME)	Good Silage (11 ME)
Silage (kg)	38.5	40	38
Draff (kg)	10	8	8
Barley (kg)	1.2	0.5	-
Minerals (kg)	0.15	0.15	0.15

 Draff analysis used was from draff analysed in Skye last year – extremely variable and may be better feed value now

Sheep Rations

Pre Lambing

- Important ewes are in the right condition for lambing – assess early
 - -Ideally around weaning

Target Condition Scores:

	Hill Sheep	Crossbred Sheep
Mating	2.5 – 3	3 – 3.5
Mid Pregnancy	2.5	3
Lambing	2.5	3
Weaning	2	2.5

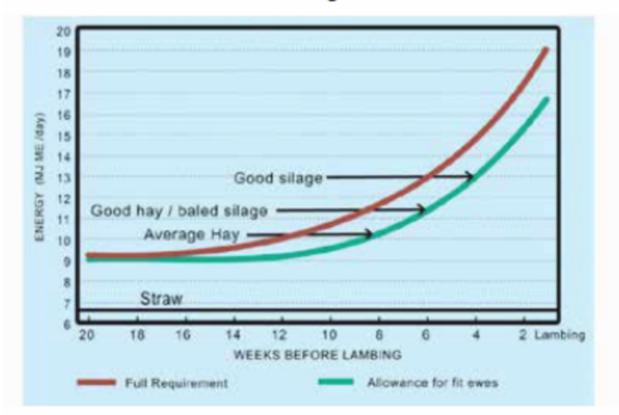
Body Condition Score

- Avoid extreme fluctuations
- 1 unit = 13 % live weight
 - -75 kg ewe
 - -1 BCS = 9.8 kg
- Aim to gain ½ condition score over 60 days = 80g/day gain
- Segregate thinner ewes for better grazing or feeding

Energy Requirements (MJ ME/day)

- 75 kg ewe:
 - Ewes in good condition losing 0.5 CS in last months of pregnancy

	Weeks Before lambing			
	8	6	4	2
Single	10	11	12	14
Twins	11	12	14	17
Triplets	12	13	15	18



Forage Supplementation

Energy requirements of pregnant 75 kg twin bearing ewes

Ration for Pregnant 75kg ewe with twins

	Weeks before lambing			
	8	6	4	2
Hay	Ad lib			
Conc. 12.5 ME 18% CP	0.2	0.4	0.6	0.8

	Weeks before lambing			
	8	6	4	2
Average silage	Ad lib			
Conc. 12.5 ME 18% CP	-	0.25	0.45	0.6

DUP in late pregnancy

- Digestible undegraded protein bypasses the rumen
- In late pregnancy microbial protein is not enough
- Protein level 18% CP in compound
 - Gives no indication about quality of protein
- Feed 100g soya per lamb carried/ewe/day for last 3 weeks
- Improved colostrum quality
- Also found to reduce worm burden

Minerals/ Vitamins

- Important for lamb vigour
- Vitamin E
 - 100 150 IU/kg compound feed
- Selenium
 - Works with Vit. E high levels boost immunity
 - Shown to reduce incidence of retained placenta
 - Promote milk yield
- Iodine
 - Essential for newborn lamb to control body temperature

Post Lambing

- If ewes on good silage with good access they will consume around 1.6% BW on a DM basis
- Ewe with twin lambs, producing 2kg milk/day require around 25MJ to maintain body condition
- Ewes reach peak milk yield between 3-4 weeks post lambing
- Housed ewes ensure ad-lib access to forage and increase the compound feed

Lactation at grass

- Ewes at grass supplementation will depend on:
 - Ewe body condition
 - Number of lambs at foot
 - Grass quality and quantity
- Set stocked ewes won't require additional feeding if grass above
 4cm
- When grass quality or quantity is poor, continue feeding ewes 3-4 weeks after lambing
- Magnesium deficiency (grass staggers) problem in peak lactation especially if ewes turned out on lush spring grass
 - Provide Mg supplement
 - Include 0.7% Mg in the concentrate feed

Take away messages:

- Plan ahead
- Assess condition of your stock early and regularly
- Get your forage analysed know what you're feeding to make the most of what you have
- Prioritise animals and match what you have to what needs it
- Adjust rations for lactation
- Ensure you are meeting energy and protein requirements for lactation
- Don't forget about minerals/vitamins

Thank You

