

Soil Nutrients SRUC There are 13 nutrients that are essential for plant growth. However, for grassland production the ones that need to keep track of : NITROGEN PHOSPHATE POTASSIUM SULPHUR For animal nutrition :MAGNESIUM

N	11	ŀ٣	$^{\circ}$	σ	Δ 1	n
T.	1	u	v	5	U.	ш

N

- Nitrogen is needed for almost every plant process. It forms amino acids, proteins, chlorophyll.
- The reserves of N in soil are actually very high: between 4,000 and 5,000 kg/ha (3,200 to 4,000 units/acre)
- Most of this is locked up in the soil organic matter.
- It is released to the grass through bacterial activity---which is both temperature dependent and pH dependent.
- Between 1 and 2% can be released per annum 40 to 100 kg/ha
 (32 to 80 units/acre)

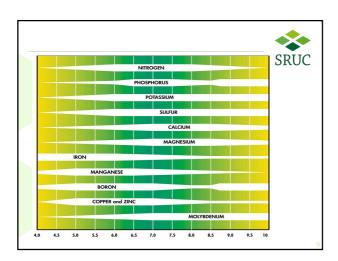
Phosphorus

P

- Phosphorus (phosphate) is needed for plant cell division. It also provided energy reserves.
- Very important for root development
- Uptake by grass is temperature dependent. Deficiency most likely to be seen in spring when soil temperatures remain low.
- Soil tests are good predictors of availablity

Potassium

- Potassium (potash) is needed for carbohydrate production in the plant.
- · It is also important for drought tolerance
- It tends to be fairly mobile; it can even be washed out of the grass leaf.
- · Soil tests are good predictors of availability


Sulphur

- Sulphur is needed for amino acid and proteins.
- Deficiency symptoms tend to be similar to nitrogen general lack of growth.
- If growth is poor after application of N fertiliser, then the cause could be S deficiency
- · Leaf tests are used to determine availability

Soil pH Very acid Acid Acid Mildy acid Neutral Mildy akaline Mildy akaline Soil pH

\sim	• •		
V.	\ı	n	ы
υı	ш	. v	ΙІ

The acidity of soil has a major impact on grass growth.

The trend is normally towards acidity due to rainfall (pH 5.5) and fertiliser application :

For example: The following fertiliser products applied over a 5 year period would need the amount of lime shown to return to original pH

FERTILISER	Total applied cwt/acre	Lime required cwt/acre	Total applied kg/ha	Lime required kg/ha
34.5-0-0	10	6.2	1250	780
25-5-5	10	4.4	1250	550
16-16-16	10	2.9	1250	360
8-24-24	10	1.4	1250	170

Soil pH

· A number of trials have shown that :-

Raise soil pH from 4.5 to 6.0 → increases herbage production from 6 to 9 tonnes DM /ha per year

(Approximately every 0.1 pH unit ______ 200 kg DM/ha increase)

To increase soil pH from 4.5 to 6.0 would require approx. 5 Tonnes of lime per ha,

To increase herbage production from 6 to 9 tonnes DM/ha per year would require 100kg Nitrogen/ha per year.

Raising soil pH

Various liming materials :-

- Limestone (Calcium carbonate)
- Dolomitic limestone (Magnesium carbonate)
- Burnt lime (Calcium oxide)
- Slaked lime (Calcium hydroxide)
- Other by-products eg ground scallop shell waste

Their effectiveness assessed by neutralising value, but particle size is also important.

Application of nitrate fertiliser also raises pH

Soil Ecology

- Grassland type may have an effect :-
- Trial established (Wageningen University) Spring 2004

December 2005	Root biomass g/m2 0 -10 cm	Earthworm Number/m2 (0 to 20cm depth)	Earthworm Burrows/m2 (10 cm depth)
Grass only	218	326	67
Grass /clover	193	359	138
Clover only	73	480	225

The Root of the Matter

It is inevitable that root growth is often forgotten about.

However, all plant nutrients are derived from the root system; and, like the grass leaves, the roots need air------

So any maintenance to help root growth will have a major impact on grass growth.

