

Soil Structure: Compaction: how to assess and manage problems

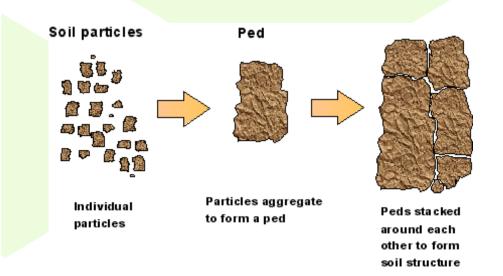
Paul Hargreaves, SRUC Dairy Research Centre

Leading the way in Agriculture and Rural Research, Education and Consulting

Soil Structure

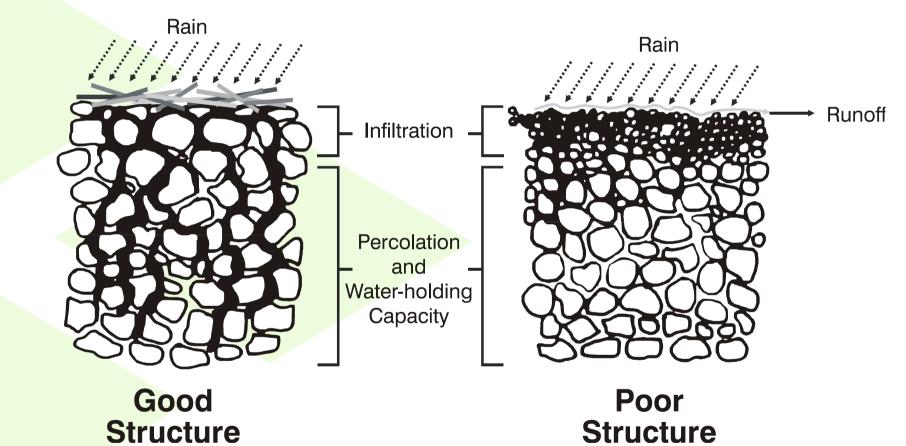
- Structure is the how the particles bind together to form aggregates that allows:
- roots to anchor the plant
- water to drain through pores and cracks
- water retention
- air to roots for favourable gas exchange
- mineralisation of nutrients and release to crop roots
- biodiversity of microbes

Structure formation

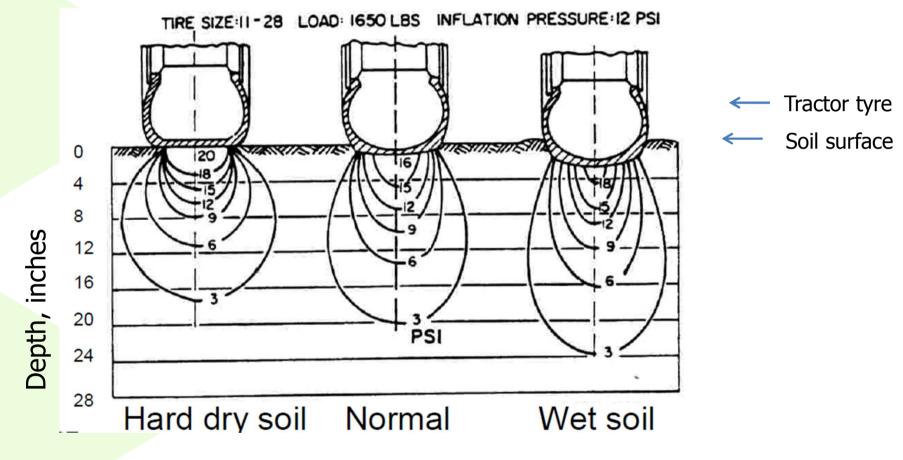


- Cycles of freezing and thawing
- Cycles of wetting and drying
- Binding action of roots and hyphal strands
- Addition of plant and faunal residues and their decomposition in the soil

- A grouping of particles joined together or a grouping of aggregates (from pinhead to hand size)
- Joining is by 'glues' of clay and organic matter and binding by roots and fungal hyphae



Structure affected by compaction



Compaction and soil moisture

As soil moisture increases - amount and depth of compaction increases

http://www.engr.uconn.edu/~lanbo/CE240LectW041fieldcompaction.pdf

Assessment of Soil Structure

- Methods of structure assessment
- Visual Evaluation of Soil Structure (VESS)
- Giving Values to Structure
- Compaction
- Providing solutions

Visual Evaluation of Soil Structure (VESS)

What is needed?

- A Spade!
- Show if aeration or subsoiling is needed and how successful it has been
- Monitor soil health take photographs
- Areas of field with suspected compaction
- Topsoil assessed with spade
- Subsoil and topsoil assessed by digging pits

Visual Evaluation of Soil Structure

Soil structure affects root penetration, water availability to plants and soil aeration. This simple, quick test assesses soil structure based on the appearance and feel of a block of soil dug out with a spade. The scale of the test ranges from Sq1, good structure, to Sq5, poor structure.

Equipment:

Garden spade approx. 20 cm wide, 22-25 cm long. Optional: light-coloured plastic sheet, sack or tray ~50 x 80 cm, small knife, digital camera.

When to sample:

Any time of year, but preferably when the soil is moist. If the soil is too dry or too wet it is difficult to obtain a representative sample. Roots are best seen in an established crop or for some months after harvest.

Where to sample:

Select an area of uniform crop or soil colour or an area where you suspect there may be a problem. Within this area, plan a grid to look at the soil at 10, preferably more, spots. On small experimental plots, it may be necessary to restrict the number to 3 or 5 per plot.

Bruce Ball, SRUC (<u>bruce.ball@sruc.ac.uk</u>), Rachel Guimarães, University of Maringá, Brazil (rachellocks@gmail.com), Tom Batey, Independent Consultant (<u>2033@tombatey.f2s.com</u>) and Lars Munkholm, University of Aarhus, Denmark (<u>Lars.Munkholm@aqrsci.dk</u>)

		UNIVERSITET UEW DICO					
Method of assessm	nent:						
Step	Option	Procedure					
Block extraction and ex	amination						
1. Extract soil block	Loose soil	Remove a block of soil ~15 cm thick directly to the full depth of the spade and place spade plus soi onto the sheet, tray or the ground					
	Firm soil	Dig out a hole slightly wider and deeper than the spade leaving one side of the hole undisturbed. On the undisturbed side, cut down each side of the block with the spade and remove the block as above.					
2. Examine soil block	Uniform structure	Remove any compacted soil or debris from around the block					
	Two or more horizontal layers of differing structure	Estimate the depth of each layer and prepare to assign scores to each separately.					
Block break-up							
 Break up block (take a photograph - optional) 		Measure block length and look for layers. Gently manipulate the block using both hands to reveal any cohesive layers or clumps of aggregates. If possible separate the soil into natural aggregates and man-made clods. Clods are large, hard, cohesive and rounded aggregates.					
 Break up of major aggregates to confirm score 		Break larger pieces apart and fragment it until a piece of aggregate of 1.5 - 2.0 cm. Look to their shape, porosity, roots and easily of break up. Clods can be broken into non-porous aggregates with angular corners and are indicative of poor structure and higher score.					
Soil scoring							
5. Assign score Match the soil to the pictures category by category to determine which fits b							
6. Confirm score from:		Factors increasing score:					
	Block extraction	Difficulty in extracting the soil block					
	Aggregate shape and size	Larger, more angular, less porous, presence of large worm holes					
	Roots	Clustering, thickening and deflections					
	Anaerobism	Pockets or layers of grey soil, smelling of sulphur and presence of ferrous ions					
	Aggregate fragmentaion	Break up larger aggregates $\sim 1.5-2.0~\mathrm{cm}$ of diameter fragments to reveal their type					
7.Calculate block scores for two or more layers of differing structure		Multiply the score of each layer by its thickness and divide the product by the overall depth, e.g. for a 25 cm block with 10 cm depth of loose soil (Sq1) over a more compact (Sq3) layer at 10-25 cm depth, the block score is $(1 \times 10)/25 + (3 \times 15)/25 = $ Sq 2.2.					

Structure quality	Size and appearance of aggregates	Visible porosity and Roots	Appearance after break-up: various soils	Appearance after break-up: same soil different tillage	Distinguishing feature	natural	nce and description of or reduced fragment 1.5 cm diameter
Sq1 Friable Aggregates readily crumble with fingers	Mostly < 6 mm after crumbling	Highly porous Roots throughout the soil			Fine aggregates	Į (The action of breaking the block is enough to reveal them. Large aggregates are composed of smaller ones, held by roots.
Sq2 Intact Aggregates easy to break with one hand	A mixture of porous, rounded aggregates from 2mm - 7 cm. No clods present	Most aggregates are porous Roots throughout the soil			High aggregate porosity	: : :	Aggregates when obtained are rounded, very fragile, crumble very easily and are highly porous.
Sq3 Firm Most aggregates break with one hand	A mixture of porous aggregates from 2mm -10 cm; less than 30% are <1 cm. Some angular, non- porous aggregates (clods) may be present	Macropores and cracks present. Porosity and roots both within aggregates.			Low aggregate porosity	ţ.	Aggregate fragments are fairly easy to obtain. They have few visible pores and are rounded. Roots usually grow through the aggregates.
Sq4 Compact Requires considerable effort to break aggregates with one hand	Mostly large > 10 cm and sub-angular non-porous; horizontal/platy also possible; less than 30% are <7 cm	Few macropores and cracks All roots are clustered in macropores and around aggregates	Start Start		Distinct macropores	E	Aggregate fragments are easy to obtain when soil is wet, in cube shapes which are very sharp- edged and show cracks internally.
Sq5 Very compact Difficult to break up	Mostly large > 10 cm, very few < 7 cm, angular and non- porous	Very low porosity. Macropores may be present. May contain anaerobic zones. Few roots, if any, and restricted to cracks	A. C.		Grey-blue colour		Aggregate fragments are easy to obtain when soil is wet, although considerable force may be needed. No pores or cracks are visible usually.

Assessing Soil

- Smell
- Colour
- Ease of break up of the soil
- Larger soil aggregates
- Sharper points to soil aggregates

Good Soil Structure (Sq1)

Good but larger aggregates (Sq2)

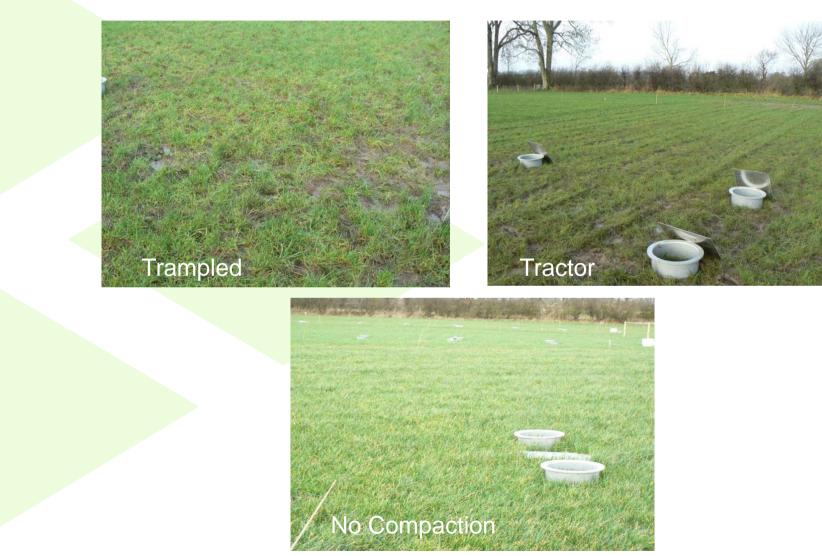
Signs of compaction (Sq3)

Compaction Issues (Sq4)

Very compacted (Sq5)

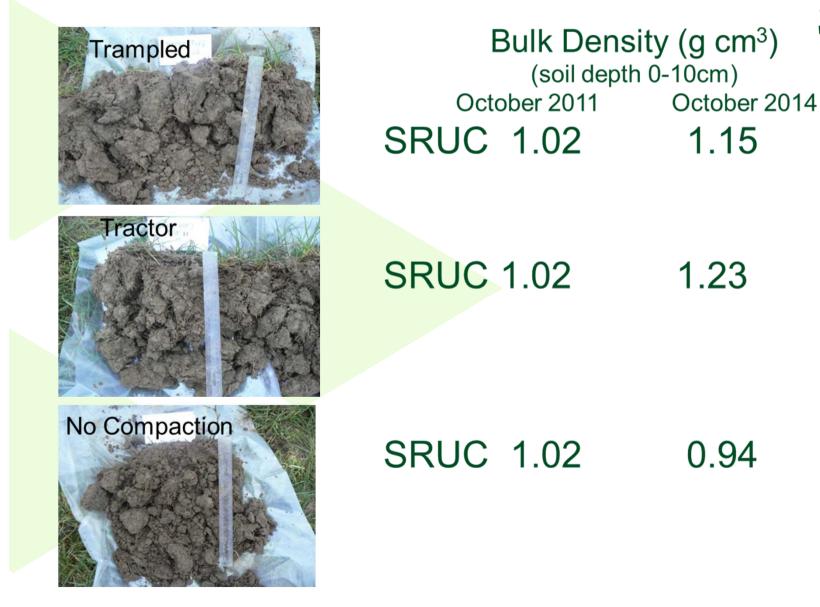
ľ	Management from VESS Scores							
				SRUC				
	Threshold S	ned agric	ultural					
	Sq score	Soil structural quality		gement eds				
	1-2	Good		anges eded				
	3	Fair		-term ements				
	4-5	Poor		t-term ements				

Types of Compaction



Animal trampling effect the upper layer of the soil (0-10cm).

Mechanical compaction – much heavier and effects of compaction are further down the soil profile (0-20cm).


Compaction Treatment - Surface

Soil After Compaction Treatments

Dry Matter Yield Reductions (t/ha)

SRUC			Harper Adams					
Yield Reduction (t/ha)		Percent reduction (%)		Yield Reductior (t/ha)		Percent reduction (%)		
	Trampled	Tractor	Trampled	Tractor	Trampled	Tractor	Trampled	Tractor
2012	0.6	0.3	6.5	1.0	0.6	0.1	6.2	1.8
2013	0.4	1.0	5.6	11.5	0.2	0.6	1.9	-5.1
2014	1.6	2.0	11.0	14.3	2.0	2.3	12.2	14.3
All Years	2.6	3.3			2.8	3.0		

Compaction and Nitrogen Use

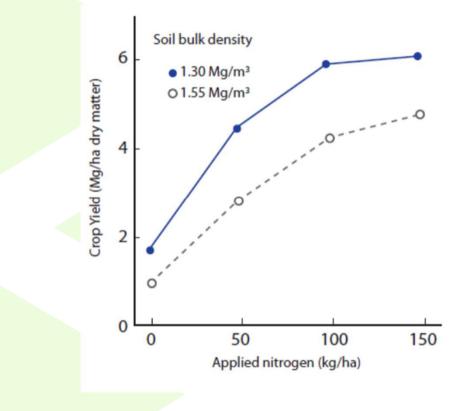
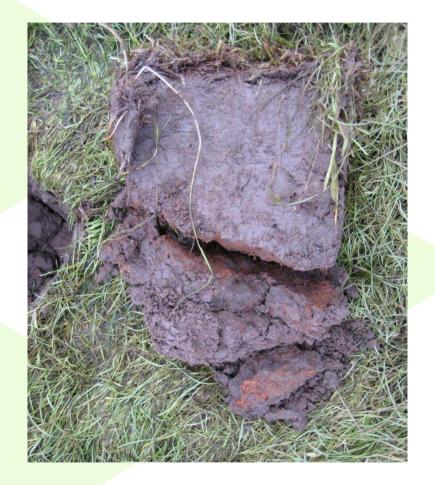
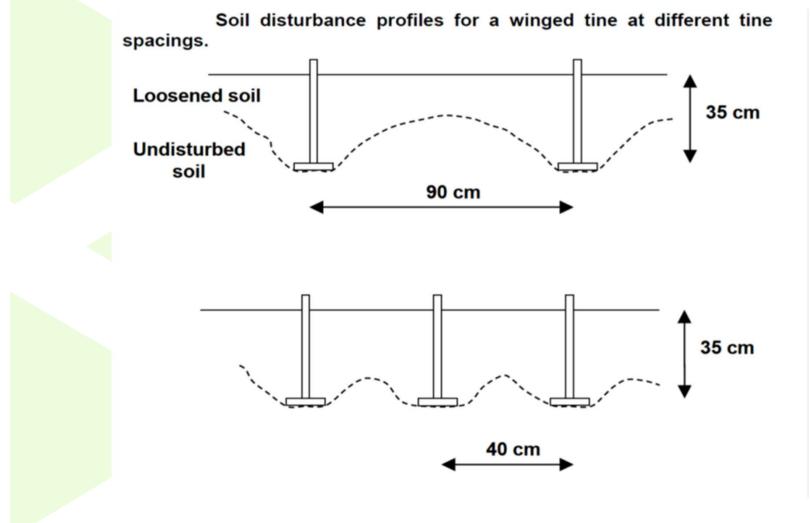



Figure 8.3: The relationship between the amount of nitrogen applied and crop yield under different compaction regimes. A compacted soil (bulk density of 1.55 Mg/m³) may require more nitrogen to obtain a similar yield to a non-compacted soil (bulk density of 1.30 Mg/m³). From Soane and Vanouwerkerk (1995)

Waterlogging – long-term

Waterlogging prevents oxygen from reaching soil organisms and roots causing them to suffocate. Available nutrients are lost. Sulphate, manganese and iron are reduced producing dull grey/blue colours.

Remediation and Working Depths



		UNCC
Туре	Typical working depth (cm)	
	depth (cm)	
Aerators i.e.	0 – 15cm	
spiking or slitting		Sward Lifter
Sward Lifters	15 -35cm	
Sub-soilers	35 – 50cm	
		and the state of t

Sward lifters SRUC Loosening a compaction pan with a sward lifter (adapted from NSRI, 2002). Loosened soil Base of pan ... Side view Front view Note: the working depth has to be just below the zone that needs to be broken up.

Sward lifters

Remediation of severe wheel rutting

- Make fissures across the ruts
- Allows water to drain into the adjacent uncompacted soil

www.mascus.com

Minimising Compaction

Mechanical

- Reduce weight remove ballast, lighter machines
- Reduce ground pressure wide tyre, low inflation pressure

Animal

- Cow tracks
- On/off and strip grazing
- Good network of tracks and gateways
- Grasses with dense tillering

General

- Check drains and ditches
- Improve drainage

Thank You

SRUC receives funding from Scottish Government Work funded by AHDB Dairy

Problems with compacted soil

- Surface capping break down of the soil surface structure, decreasing emergence
- Erosion loss of surface soil in run-off
- Compaction poor root penetration
- Reduced water infiltration
- Anaerobic layers caused by poor drainage and compaction
- Reduced nutrient efficiency