Crop & Soil Analysis

Location - Aucheneck Estate Date 10th October 2019

Offtake update

Trace Elements

Soil Analysis

Offtake Update

Field 1 – 2nd Cut

- Offtake 2nd cut
- P₂O₅ Planet 1.70kg/t, Aucheneck 2.38kg/t
 20
 29
- K₂O Planet 6.0kg/t, Aucheneck 8.62kg/t

• 72 103

Field 2 – 2nd Cut

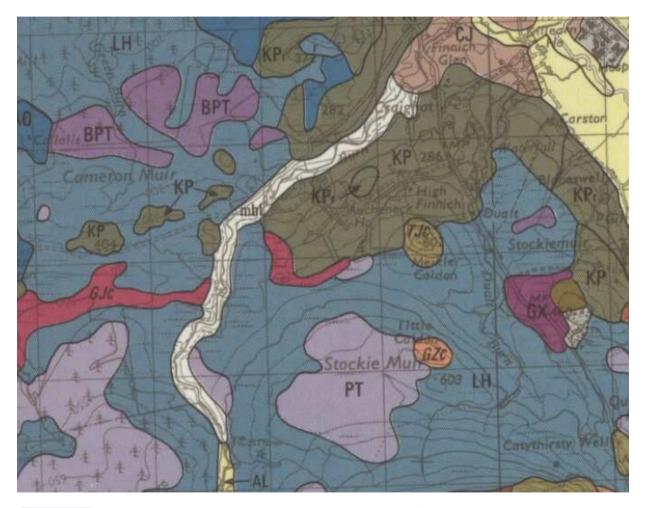
- Offtake 2nd cut 12t/ha
- P₂O₅ Planet 1.70kg/t, Aucheneck 2.13kg/t
 20
 26
- K₂O Planet 6.0kg/t, Aucheneck 8.56kg/t
 - 72 103

- Offtake Winter Wholecrop
- P₂O₅ Planet 1.8kg/t, Aucheneck 1.92kg/t
- K₂O Planet 5.4kg/t, Aucheneck 4.9kg/t

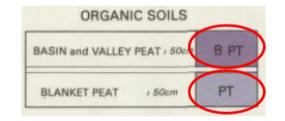
Trace Elements

- Minerals in small quantities in the soil e.g.
 - Cu, B, Fe, Co, Al, Mo, Mn, Zn etc
- Essential for normal health and function
- Both in Crops and Livestock

- Soil type
- pH
- Drainage
- Trace element interaction



Soil Type - Soil Map



		Brown	orest Soils	Humus-Iron Podzols	Peaty Podzols	Noncelcare	ious Gleys	Peaty Gleys
				s	ERIE	S		
ASSOCIATION	PARENT MATERIAL	Freely Drained	Imperfectly Drained	Freely Drained	Imperfectly Drained	Imperfectly Drained	Poorly Drained	Poorty and Very Poorty Drained
KIPPEN	Drifts derived from sandstones of Upper Old Red Sandstone age with some Dalradian schist erratics	FK Fourmerk	KP Kippen	RD Redbrae	GX Garrique		AO Arnmore	LH Limpithill
	Till, derived from rocks as above, with partially water- sorted upper layers		BW				QL Quinloch	

		Freely Drained	Imperfectly Drained	Poorly Drained
	Sandy	JC Culnacoyle	JK Kaime	JR Rockfield
	Loamy	JP Peobles	JT Traquair	JL Lochaide
MINERAL ALLUVIAL SOILS	Silty		JS Shandwick	JB Bindal
	Clayey			JH Heavyside

Availability with pH

Strong a	cid	Medium acid	Slightly acid	Very slightly acid	Very slightly alkaline	Slightly alkaline	Medium alkaline	Strongly alkaline
	-							
				ni	trogen			
				p	nospho	orus		
				po	otassiu	ım		
				SI	Iphur			
				Ca	lcium			
				m	agnes	ium		
		iron						
		mangan	ese					
		boron						
		copper	& zinc			-		
				m	olybde	enum		
4.5	5.0	5.5 6	.0 6	.5 7	.0 7	.5 8	.0 8.5	5 9.0 9.5 1

• Free draining soils contain less trace elements than poorly drained soils

Copper

- Amount absorbed from diet very variable
- Excess stored in liver
- If a large amount ingested or injected toxic
- Diagnosis blood or liver
- Pasture levels can vary depending on interference of Cu, Mo, S can affect availability and absorption
- Soil Test a guide

Cobalt

- Essential component of Vit B₁₂
- Diagnosis blood or liver
- Pasture levels can vary by pH, Fe and Mn
- Moredun indicated upland/ moorland pastures with pH < 5 may have Cobalt poorly absorbed.
- Clover higher than ryegrass and higher in Autumn than Spring

Cobalt - Soil

- Soil test a guide
- Soil Co higher level than pasture
- Liming increases pH reduces concentration of Co in grass
- Can induce Co deficiency on improved grass
- Faster growing grass less cobalt

Selenium

- Acts with Vit E to prevent oxidation of tissues
- Diagnosis blood/ enzymes
- Excess toxic but very rare
- Clover less than ryegrass
- Herbage analysis misleading
- Soil Test direct relationship between soil, herbage and animal
- Sulphur over use can exacerbate a marginal deficiency

lodine

- Important part of control in energy metabolism
- Diagnosis blood or PM
- Level varies on species, soil type, fertiliser treatment.
- Soil Test no clear relationship between soil and herbage
- Improved grass often better than unimproved

- Important for several enzyme functions
- Levels vary widely in pasture, soil pH has a major effect on plant uptake
- Clover higher than grass
- Soil test useful as pH over 6.5 will significantly reduce levels in pasture and crop

Zinc

- Throughout the body
- Clinical signs don't usually appear until diet falls well below required levels
- Animal needs continuous supply
- Soil Test poor

Aucheneck

Trace Element Levels in Pasture

	Field 1 at	Field 2 at	Whole Crop	Typical average	Recommended	Recommended
	Aucheneck	Aucheneck		levels in UK	minimum levels in	levels in the total
				pasture	pasture to prevent	diet
					deficiency	
	mg/kg DM	mg/kg DM	mg/kg DM	mg/kg DM	mg/kg DM	mg/kg DM
Copper*	7.12	5.28	4.46	8	5**/8***	10
Cobalt	0.09	0.12	0.08	0.1	0.11**/0.08***	0.12
Selenium	0.05	0.03	0.03	0.07	0.05	0.1
Iodine				0.15	0.2^/0.5^^	0.5
Managnese	127	171	63.7	100	25	50
Zinc	22.2	21.1	22.3	50	25	50

* depends on level of Molybdenum, suplhur and iron

** Sheep Grazing

*** Cattle grazing

^ growing & dry stock

^^ pregnant and lactating stock

Standard figures courtesy of AHDB

Re-cap

- Man-made improvements can have an effect
- Rich permanent pasture diverse in species will have a higher concentration, whereas a monoculture of productive grasses will have less
- Increasing pH with lime reduces the cobalt concentration in the grass. It also increases the molybdenum concentration which reduces the available copper to the animal

- Soil test? a guide
- That only tells us what is in the soil not necessarily the plant or the animal.
- It can be an indicator a low level could mean a high possibility of deficiency.
- But a moderate to high level may not mean the animal is getting an adequate level
- If in doubt speak to your Consultant or Vet

Soil Analysis

Soil Analysis

- Check you are using the right analysis for your soil
- There is a difference in techniques between (England, Wales & N Ireland) and Scotland
- Scottish Laboratories use calcium chloride for pH and modified morgan for P & K
- "Non Scottish" laboratories use water for pH and Olsen extraction for P and Ammonium Nitrate for K

Why & what does this mean

- The "Scottish" system was developed by the then Macaulay Institute for our Scottish acidic soils as opposed to the more alkaline soils south of the border
- Interpretation is therefore different as they give different values.
- However, there is a comparison that can be made.

• Because of the two different measurements interpretation differs

	England, Wales	and N Ireland ¹	Scot	land ²	
	Optimum soil pH				
	Mineral soils	Peaty soils	Mineral soils	Peaty soils	
Continuous arable cropping	6.5*	5.8	6.0-6.2	5.7-5.9	
Continuous grassland	6.0	5.3	6.0	5.3-5.5	

- So optimum pH varies
- The same analysis should be used each time

P & K "Not Scotland"

PHOS	PHORUS	POTAS	SIUM	MAG	NESIUM
Olsen e	extraction		Ammonium ni	nitrate extraction	
Ols	Olsen P		eable K	exchan	geable Mg
Index	mg/l	Index	mg/l	Index	mg/l
0	0-9	0	0-60	0	0-25
1	10-15	1	61-120	1	26-50
2	16-25	2-	121-180	2	51-100
		2+	181-240		
3	26-45	3	241-400	3	101-175
4	46-70	4	401-600	4	176-250
5	71-100	5	601-900	5	251-350
6	101-140	6	901-1500	6	351-600
7	141-200	7	1501-2400	7	601-1000
8	201-280	8	2401-3600	8	1001-1500
9	over 280	9	over 3600	9	over 1500

P & K "Scottish"

	PHOSPHORUS	POTASSIUM	MAGNESIUM				
SAC Status	Modified Morgans extraction						
	mg/l	mg/l	mg/l				
Very low (VL)	0.0-1.7	0-39	0-19				
Low (L)	1.8-4.4	40-75	20-60				
Moderate - (M-)	4.5-9.4	76-140	61-200				
Moderate + (M+)	9.5-13.4	141-200	61-200				
High (H)	13.5-30.0	201-400	201-1000				
Very high (VH)	>30.0	>400	>1000				

	Olsen	Modi	fied Morgan
Index	Concentration	Status	Concentration
	range (mg P L ⁻¹)		range (mg P L ⁻¹)
0	0 - 9	Very low	<1.8
1	10 -15	Low	1.8 - 4.4
2	16 – 25	Moderate	4.5 – 13
3	26 – 45	High	14 - 30
4	46 - 70	Very high	>30
5	71 - 100		
6	101 - 140		
7	141 - 200		
8	201 – 280		
9	>280		

Amm	nonium Nitrate	Mod	lified Morgan
Index	Concentration range	Status	Concentration range
	(Mg K L ⁻¹⁾		(Mg K L ⁻¹⁾
0	< 60	Very low	< 39
1	61 - 120	Low	40 - 75
2	121 - 240	Moderate	76 - 200
3	241 - 400	High	201 - 400
4	401 - 600	Very High	> 400
5	601 - 900		
6	901 - 1500		
7	1501 - 2400		
8	2401 - 3600		
9	> 3600		

Yield response

Crop response and soil analysis

Defra Index	SAC description	Yield response to added nutrient by vegetable crops arable crops and gr		
0	Very low	highly likely	highly likely	
1	Low	highly likely	probable	
2	Moderate	likely	unlikely	
3	High	possible	nil	
4	Very High	unlikely	nil	
5	Very High	nil	nil	

- GPS is probably best due to the frequency of sampling but only if the kit to use it
- If not make sure the sample is representative, you are taking 1kg of soil to represent 2000 tonnes/ha (at a depth of 20 cm).
- Sample to 15cm arable soil and about 7.5cm in grassland
- Ensure the soil tests labs are giving "Scottish" results

Finally - do not sample

- within:
 - 8 weeks of fertilising P & K
 - -12 weeks slurry/fym P & K
 - -12 months of liming pH

Thank You

