### **Stranraer Soil Nutrient Network**





Green Valley Golf Academy Thursday 15<sup>th</sup> November 2018







# Agenda



- The Story so Far
- Soil Sampling and Lime
- Worm Workforce
- Trace Elements for Animals and Plants
- Potash
- Nutrient Budgets
- Close









# THE STORY SO FAR...

























































The European Agricultural Fund for Rural Development Europe investing in rural areas



#### pH Map

#### Soil pH

< 5.4

5.4 - 5.6

5.7 - 6.2

6.3 - 6.5

>6.5







#### K Map

#### Potassium Status









#### P Map

#### Phosphorus Status

















### SOIL SAMPLING

















# Soil Sampling



- Why?
- Measures the <u>plant available</u> nutrients in the soil
- Gives you information to manage deficits and surpluses in soil nutrients
- Measures the acidity of the soil Ph will dictate what is actually available to the plant
- Corrections of low ph and nutrient deficits will improve the productivity of your crop and save you money!







# How to sample



- Twist a gouge or pot corer down to 7.5cm
- Walk the field in a 'W'.



- Avoid gateways, feed areas or former muck-heap sites
- Collect 25 plugs of soil in a clean bucket
- Seal a well-mixed sub sample in a plastic bag or box and label
- Send to an accredited soil testing laboratory (either direct to the laboratory or via a local co-op, fertiliser merchant or independent company)







# Value for Money



#### **Basic Soil Report**



Soil Report

INTERIM REPORT



7624

W S AGNEW & SON Balwherrie Farm Leswalt

STRANRAER DG9 0QU

| Farm Sampled:   |                |
|-----------------|----------------|
| Your reference: | S58629         |
| Last Crop:      | Grass - silage |
| Next Crop:      | Grass - silage |
| Soil Type:      | Mineral        |

| Sample ID :    | 7 Leswalt     |
|----------------|---------------|
| Lab sample no: | 18009886      |
| Case no:       | ASD-2018-5503 |
| Date received: | 18/09/2018    |
| Date reported: | 27/09/2018    |

| Determination          | Result | Units | Status |
|------------------------|--------|-------|--------|
| pH                     | 5.4    |       |        |
| Lime req (Arable)      | 6.4    | t/ha  |        |
| Lime req (Grass)       | 3.9    | t/ha  |        |
| Extractable Phosphorus | 15.9   | mg/l  | High   |
| Extractable Potassium  | 520.0  | mg/l  | V High |
| Extractable Magnesium  | 162.0  | mg/l  | Mod    |
| Extractable Calcium    | 870    | mg/l  |        |
| Extractable Sodium     | 34.60  | ma/I  |        |

#### **Broad Spectrum Soil Report**



Soil Report

INTERIM REPORT



W S AGNEW & SON Balwherrie Farm Leswalt

STRANRAER DG9 0QU

| Farm Sampled:   |                 |
|-----------------|-----------------|
| Your reference: | S58629          |
| Last Crop:      | Grass - grazing |
| Next Crop:      | Fodder rape     |
| Soil Type:      | Mineral         |

| Sample ID :    | 4             |
|----------------|---------------|
| Lab sample no: | 18009879      |
| Case no:       | ASD-2018-5503 |
| Date received: | 18/09/2018    |
| Date reported: | 27/09/2018    |

| Determination            | Result | Result Units |      |
|--------------------------|--------|--------------|------|
| рН                       | 6.4    |              |      |
| Lime req (Arable)        | 0.0    | t/ha         |      |
| Lime req (Grass)         | 0.0    | t/ha         |      |
| Extractable Phosphorus   | 6.68   | mg/l         | M(-) |
| Extractable Potassium    | 272.0  | mg/l         | High |
| Extractable Magnesium    | 125.0  | mg/l         | Mod  |
| Extractable Calcium      | 1900   | mg/l         |      |
| Extractable Sodium       | 54.30  | mg/l         |      |
| Extractable Sulphur      | 19     | mg/l         | High |
| Extractable Copper       | 1.45   | mg/l         | Low  |
| Extractable Manganese    | 13     | mg/l         | Mod  |
| Extractable Boron        | 0.71   | mg/l         | Mod  |
| Extractable Zinc         | 1.7    | mg/l         | Mod  |
| Organic Matter (LOI)     |        | %            |      |
| Cation Exchange Capacity |        | 96 by Wt     |      |







#### **Small Print**



- Avoid sampling when soil is waterlogged....or too dry!
- Sample amalgamated fields separately
- Sample problem areas or known soil types separately
- Try to sample atleast 2 months after slurry/manure/fertiliser or lime applications
- Sample atleast every 4 years
- For fields underperforming start with a soil sample
- Try to sample the year before sowing a crop to allow time to correct any deficits









### THE FIRST PRIORITY



























# Why Do We Need to Lime?



- Leaching
- Crop Uptake
- Impact of Ammonium Nitrate Fertiliser
- Acid Rain







#### **How Much Lime?**



#### Eg Silage Land

Acidic effect of Fertiliser 175kg

Crop Removal 1<sup>st</sup> cut 80kg

Crop Removal 2<sup>nd</sup> cut 45kg

Leaching/Drainage 100-250kg

400-550kg /Ac/Yr

So 2 ton /Acre every 5 years to standstill !!!







# Why Do We Need to Lime?



#### % Nutrient Availability at different pH

|                           | <u>N</u> | <u>P</u> | <u>K</u> |
|---------------------------|----------|----------|----------|
| pH 5 (very strong acidic) | 53%      | 34%      | 52%      |
| pH 5.5 (strong acidic)    | 77%      | 48%      | 77%      |
| pH 6.0 (medium acidic)    | 89%      | 52%      | 100%     |







### At What Cost?



| Ph  | Utilisation<br>% Nitrogen | Cost of Poor Utilisation | Cost - 4 cwt<br>bags/ac<br>applied per<br>year | Cost – 7 cwt bags/ac applied per year | Cost of Lime/ac applied |
|-----|---------------------------|--------------------------|------------------------------------------------|---------------------------------------|-------------------------|
| 5   | 53                        | £6                       | £24                                            | £42                                   | £132                    |
| 5.5 | 77                        | £4                       | £16                                            | £28                                   | £66                     |
| 6   | 89                        | £1.50                    | £6                                             | £10.50                                | £33                     |









# Soil Quality: Soil Indicators

Dr. Paul Hargreaves
SRUC Dairy Research and Innovation Centre







## Soil – air, water, minerals











#### Soil functions







Support hooves and wheels





Prevent NO<sub>3</sub> and pesticide leaching losses

Good soil function increases profitability and conserves the environment







#### Soil Profile





**'O' horizon** – Organic horizon, generally dead plant material. Can be missing - deeper in forest soils.

**'A' horizon** – Top-soil, usually contains most organic material and has the greater mass of roots – most biological activity, with greater soil structure

**'B' horizon** – Sub-soil, can be several metres thick, usually of a greater density than the top soil, less organic material, greater mineral content. Lighter in colour.

**'C' horizon** – Parent material, generally undefined layer containing more minerals, can be from the underlying rock material or bedrock, but not always the case.







#### Soil Structure

Structure is the how the particles bind together to form aggregates that allows:

- roots to anchor the plant
- water to drain through pores and cracks
- water retention
- air to roots for favourable gas exchange
- mineralisation of nutrients and release to crop roots
- biodiversity of microbes











# **Organic Matter**



- Soil plays a major role in the global carbon cycle, with the global soil carbon pool estimated at 2500 gigatons, 3.3 times the size of the atmospheric pool and 4.5 times the biotic pool.
- Organic material in the soil comes from the breakdown of plant and animal material.
- Depending on their chemical structure, decomposition is rapid for sugars, starches and proteins (days), slow for cellulose, fats, waxes and resins (months) or very slow for lignin (years).
- 35-80 % of the non-living part of organic matter is humus







# Living Soils

Huge quantity of organisms

- Fauna: 1-5 t/ha

- Fungi: 3.5 t/ha

- Bacteria: 1.5 t/ha



Photo : L. Avoscan & A. Viollet

- Fantastic diversity
- Until recently: only access to culturable microorganisms
- Methodological progresses⇒possibility to extract DNA from soils
  - ♦ 10<sup>4</sup> 10<sup>6</sup> bacterial genotypes / g soil
- A lot to be explored on the relations between below & aboveground diversity



#### What lives in the soil?













### Soil Biota











### **Earthworms**





Can be very good indicator of soil quality as:

- they do not move very far (10 metres)
- can live for up to 10 years
- exposed to soil changes pH, waterlogging, compaction, organic matter







#### **Earthworms**





Modified from Fraser and Boag 1998



Three main types:

**Litter Feeders** (Epigeic) – found close to the soil surface or in the litter layer

**Shallow Burrowers** (Endogeic) – found in extensive borrows close to the soil surface and feed on organic material

**Deep Burrowers** (Anecic) – more vertical borrows and mix mineral soil with organic material from the surface





### Soil Pores



Dye labelling







Computer-aided tomography





# **Aggregates Sizes**













# Soil After Compaction Treatments













# **Earthworms and Compaction**











## **Earthworms and Compaction**











## Earthworm Identification I





#### **Key to common British earthworms** of amenity grasslands

By David T. Jones and Chris N. Lowe

There are 26 British species of earthworm. This guide covers the seven most common species that occur in grass lawns and playing fields. It does not include the red stripy earthworms that occur in compost heaps, other species that occur in gardens, or woodland species.



Often a dark purplish head

It is not a mature earthworm - you can't identify it with this guide. At least 50% of the earthworms you find will be immatures.



Start here





It may be



Black-headed worm Aporrectodea longa



Hint Line drawings

show typical sizes of the adult worm

Produced for OPAL 2012.

This may be copied for

www.opalexplorenature.org

Redhead worm

Lumbricus rubellus



Sometimes slightly flattens its tail into a paddle shape

m-

CV-



## Earthworm Identification II











## **Earthworms and Compaction**





### Worm Numbers











### Other Methods











## Background - Soil Compaction SR



#### Soil Compaction Problem

- Severe or poor soil condition in 8 12% of grasslands\*
- If moderate fields included then over 70%\*
- Reduced pore space/increased water filled pore space
- Reduced oxygen diffusion
- Microbial activity decreases

<sup>\*</sup> Newell-Price et al., (2013). Soil & Tillage Research, 127







## **Experimental Work**







- An 8 ha perennial ryegrass field at SW Scotland split into two
- Two traffic management treatments: normal (N) and CTF
- 3-cut silage system
- 9 m triple gang mower (9 m working width)



# Controlled Traffic Farming – Working widths













## Results of Experimental Work



| Measurement                       | Normal Traffic | Controlled Traffic |
|-----------------------------------|----------------|--------------------|
| Bulk Density (g cm <sup>3</sup> ) | 1.02           | 0.99               |
| VESS                              | 1.93           | 1.84               |
| рН                                | 6.5            | 6.4                |
| P (Index)                         | 2              | 2                  |
| K (index)                         | 2-             | 2-                 |

| Silage Cut                                   | Normal<br>Traffic | Controlled<br>Traffic | Difference<br>(t DM ha <sup>-1</sup> ) | P-<br>value |
|----------------------------------------------|-------------------|-----------------------|----------------------------------------|-------------|
| 1 <sup>st</sup> Cut (t DM ha <sup>-1</sup> ) | 5.28              | 5.43                  | 0.15                                   | 0.27        |
| 2 <sup>nd</sup> Cut (t DM ha <sup>-1</sup> ) | 3.58              | 3.88                  | 0.30                                   | 0.72        |
| 3 <sup>rd</sup> Cut (t DM ha <sup>-1</sup> ) | 2.34              | 2.84                  | 0.50                                   | <0.01       |
| 2 <sup>nd</sup> + 3 <sup>rd</sup> Cut        | 5.92              | 6.72                  | 0.80                                   | <0.05       |
| Total silage                                 | 11.29             | 12.15                 | 0.96                                   |             |







## Cost of guidance equipment



| Investment | Equipment                           | Repeatable positioning | Capital<br>Cost | RTK Annual<br>Fee | Total Annual<br>Cost*** |
|------------|-------------------------------------|------------------------|-----------------|-------------------|-------------------------|
| Level 1    | Low accuracy* Manual steering       | No                     | £1,500          | -                 | £468                    |
| Level 2    | Low accuracy* Assisted steering     | No                     | £5,000          | -                 | £1325                   |
| Level 3    | High accuracy** Assisted Steering   | Yes                    | £10,000         | £500              | £3050                   |
| Level 4    | High accuracy** Integrated steering | Yes                    | £15,000         | £500              | £4275                   |

<sup>\* (+/-150–200</sup> mm) These will result in an increase in trafficked area due to their inaccuracy and non-repeatable positioning

<sup>\*\*\*</sup> The total annual cost includes interest rates (4.5%), depreciation (15%), maintenance (5%) and training (£100 year<sup>-1</sup>) (Nix, 2015)







<sup>\*\* (+/-20</sup> mm) Real Time Kinematic (RTK)

### Cost benefits of CTF



#### **Assumptions**

- The average DM yield for 2 and 3 'cut' managed grassland harvest systems in the UK is 12 t ha<sup>-1</sup> and 16.6 t ha<sup>-1</sup> respectively
- The crop has a value of £72 t<sup>-1</sup>
- Normal traffic management covers 80% of the field area
- The use of CTF increases forage yields by an average of 13%

#### **Benefits**

| Trafficked area % | Yield increase ha <sup>-1</sup> 2-cut |     | Yield incre | ase ha <sup>-1</sup> 3-cut |
|-------------------|---------------------------------------|-----|-------------|----------------------------|
| 45                | 0.53 t                                | £38 | 0.73 t      | £53                        |
| 15                | 1.00 t                                | £72 | 1.36 t      | £98                        |







## Break even for different numbers of





Level 1 Level 2 Level 3 Level 4

Assuming additional costs are for vehicle guidance:

- A break-even area of 175 ha for a 15% trafficked area and 3 cuts year-1 with four high accuracy (RTK)-integrated steering systems
- A break-even area of 50 ha for a 45% trafficked area and 2 cuts year<sup>-1</sup>, for four low accuracy-manually steered systems







## Why measure soil quality?



Think of it in terms of:

An MOT for your soil
 Or A check up at the doctors



- Working towards
  - rolling out soil quality testing







## First Questions



- What is the state of my soil?
- Depends on
  - Soil type
  - What you want to do with it



- How do I tell?
  - Need indicators as can't measure everything







## Components of soil quality



Ph

Putting it all together will need a different approach to sample collection linking physical observation and soil samples sent for testing











# Rolling out soil quality testing - Scorecard threshold values



Based on proposals for soilquality.org.uk (based on the Australian model - <a href="http://www.soilquality.org.au/">http://www.soilquality.org.au/</a> ) to enable utilisation of a wider database for benchmarking and ultimately advice.

The traffic light sytem represents:

#### **RED**

(High risk, need to investigate urgently)

**AMBER** 

(Moderate risk, need to investigate further)

**GREEN** 

(Low risk, continue to monitor)







### Practical considerations







If you are looking for a comprehensive assessment of your soil, the SAC Consulting Soil Health Test gives tailored advice to maintain and improve soil health, based on biological, physical and chemical analyses.

Our soil health test can help you:

- · optimise crop and grass growth with reduced inputs
- · maximise the number of workable days
- deliver yield stability
- reduce tillage costs
- reduce irrigation
- · minimise erosion and pollution risks

The SAC Consulting Soil Health Test builds on our routine testing for pH and nutrients (P, K, Mg) and additionally measures soil organic matter, soil physical structure, earthworms and potentially mineralisable nitrogen.

#### https://www.sruc.ac.uk/soittest.

Your results are presented in an easy to understand 'traffic-light' format, giving a simple and informative overview of soit health, together with detailed descriptions and information on each of the measurements. Management advice is also provided.

Through our confidential database, you can see how your soils compare with similar soils under the same conditions and, with repeated sampling, see how your soils are performing over time.

To inquire about a SAC Consulting Soil Health test contact:

soitheatth@sac.co.uk



Full details on the reverse





#### Selected soil health measurements:

Routine analysis (P, K, Mg, Ca, pH) LOI VESS Earthworms

Why?

Combines physics, chemistry and biology
Lab set-up
Turn around time





### Potential scorecard...



NAME ASD-2018-4897 CUSTOMER TEXT ID

Field Name West Mid East

FID

| Potentially Mineralisable N | 30   | 30   | 36.4 | mg/kg |
|-----------------------------|------|------|------|-------|
| Organic Matter (LOI)        | 5.39 | 5.38 | 5.74 | %     |
| Н                           | 5.6  | 5.8  | 6.3  |       |
| Extractable Phosphorus      | 5.13 | 13.5 | 27.9 | mg/L  |
| Extractable Potassium       | 390  | 321  | 305  | mg/L  |
| Extractable Magnesium       | 113  | 118  | 170  | mg/L  |
| Extractable Calcium         | 1500 | 1400 | 2000 | mg/L  |
| Extractable Sodium          | 14.5 | 11.6 | 13.1 | mg/L  |
| mean VESS                   | 2.7  | 1.7  | 2    |       |
| Mean worms                  | 2.3  | 1.7  | 1    |       |

| Lime req (Grass)  | tonne/Hectare | 4.7 | 3.7 | 0 |
|-------------------|---------------|-----|-----|---|
| Lime req (Arable) | tonne/Hectare | 2.7 | 0   | 0 |

Soil texture = sandy loam

Soil health recommendation

Soil structure (VESS) low in the West field

Adding OM and upping pH should alieviate this

Depending on OM source consider extra N to account for immobilisation

Worm numbers would benefit from OM and reduced tillage







## Potential for benchmarking



 As in the current SRUC 'AGREcalc' where you can see your carbon footprint in relation to others

- You will be able to see how your soils perform against comparable soils and over time
- Benchmarking will improve the more data is entered







## Benchmarking Results











## Summary



- Living soil is important for crop yield and quality
- Can be an indicator of soil health
- Compaction is important as it reduces yields
- Soil health monitoring is a combination of methods
- Benchmarking indicates the health of a soil compared to other fields in the area









## Thank you







## Any Questions?







# TRACE ELEMENTS FOR PLANTS AND ANIMALS































- Nitrogen is found in all amino acids, proteins and enzymes
- Life does not exist without Nitrogen!









### Phosphate

- Essential for ATP
- Part of DNA/RNA
- Required for new roots

#### Potassium

- Regulates pressure and water flow in plants
- Moves photosynthates across plant
- Structure & Immunity











#### Calcium

- Strength
- Soil structure
- Soil microbes nutrient recycling

### Magnesium

- Photosynthesis
- Mobilisation of Phosphate
- Animal health issues

### Sulphur

- N efficiency
- Enzymes and Vitamins



Ca Mg S







### Fe Mn Zn Cu B

- Iron
  - Oxygen Transportation
  - Chlorophyll
- Manganese
  - Growth
  - Immune Response
  - Photosynthesis

#### Boron

- Seed & cell wall formation
- Calcium Mobility
- Zinc
  - Balanced excess K
  - Palatability
- Copper
  - Reproduction
  - Immune Response









### Mo Co Se I

- Selenium
  - N fixation in Legumes
  - Palatability
- Cobalt
  - Growth
  - Immune Response

### Molybdenum

- N formation
- Reduces Copper absorption
- Iodine
  - Thyroid Hormone Synthesis
  - Fertility

















## **POTASH**





































### Potassium in the Soil











### Sources of Potash



#### Potassium Sources - Slurry/FYM

- Muriate of Potash (60%)
- Fibrephos (0-16-16)
- Potassium Nitrate (13-0-45)
- Sylvinite (16% K20 + 32% Na20
- Sulphate of Potash (50%)







### Potash and Nitrogen











### Distribution of K20 Uptake



#### Winter Wheat 8t/ha



#### **Grass Sward**



Images from www.pda.org.uk







### Symptoms of K Deficiency















# NUTRIENT PLANS

















#### What is a Nutrient Plan?























# Why Do A Nutrient Budget?



| £ /Ton  | 2017 | 2018 | 2019  | Unit Cost |
|---------|------|------|-------|-----------|
| 34.5% N | £200 | £230 | £280+ | 81p       |
| MOP 60% | £270 | £275 | £280  | 47p       |
| TSP 46% | £280 | £315 | £354  | 77p       |







### Why Do A Nutrient Budget?



|                                     | 2017 | 2018    | 2019    |
|-------------------------------------|------|---------|---------|
| Impact<br>200 Acre Farm<br>70t/Year |      | +£2100  | +£3500  |
| Dairy                               | -    | 0.24ppl | 0.40ppl |
| Beef                                | -    | 4p/kg   | +7p/kg  |







# What Difference Does DM Make?



| DM % | N (units/1000gal) | P (units/1000gal) | K (units/1000gal) |
|------|-------------------|-------------------|-------------------|
| 5%   | 5                 | 4                 | 28                |
| 4%   | 4                 | 3                 | 23                |
| 3%   | 3                 | 2                 | 17                |







# What Difference Does Timing Make?



|        | N (units/1000gal) | P (units/1000gal) | K (units/1000gal) |
|--------|-------------------|-------------------|-------------------|
| Spring | 5                 | 4                 | 28                |
| Summer | 2                 | 4                 | 28                |
| Winter | 1                 | 4                 | 25                |







# What Difference Does Application Method Make?



|                                     | N(units/1000gal) | P(units/1000gal) | K (units/1000gal) |
|-------------------------------------|------------------|------------------|-------------------|
| Spring<br>Splashplate               | 5                | 4                | 28                |
| Spring Trailing Shoe/Dribble Bar    | 7                | 4                | 28                |
| Summer<br>Splashplate               | 2                | 4                | 28                |
| Summer<br>Trailing Shoe/Dribble Bar | 5                | 4                | 28                |







# What Difference Does Application Method Make?



|                              | N<br>(units/1000gal) | P<br>(units/1000gal) | K<br>(units/1000gal) | ££££        |
|------------------------------|----------------------|----------------------|----------------------|-------------|
| Splashplate                  | 20                   | 16                   | 112                  | £10/1000gal |
| Trailing<br>Shoe/Dribble Bar | 28                   | 16                   | 112                  | £11/1000gal |

Diff. ¼ cwt N/Acre. £3.50/acre







### **Slurry Comparison**



| Source       | DM    | N<br>(units/1000gal) | P<br>(units/1000gal) | K<br>(units/1000gal) |
|--------------|-------|----------------------|----------------------|----------------------|
| Teagasc      | 5%    | 5                    | 4                    | 28                   |
| Wigtownshire | 6.4%  | 8                    | 5                    | 27                   |
| SAC          | 6%    | 7                    | 5.5                  | 20                   |
| RB209        | 6%    | 7                    | 5.5                  | 21                   |
| Balwherrie   | 7.66% | 5                    | 4                    | 23                   |







#### **Nutrient Plan**



W S AGNEW & SON Balwherrie Farm Leswalt



7624

STRANRAER DG9 0QU

| Farm Sampled:   |                |
|-----------------|----------------|
| Your reference: | S58629         |
| Last Crop:      | Grass - silage |
| Next Crop:      | Grass - silage |
| Soil Type:      | Mineral        |

| Sample ID :    | 12            |
|----------------|---------------|
| Lab sample no: | 18009887      |
| Case no:       | ASD-2018-5503 |
| Date received: | 18/09/2018    |
| Date reported: | 27/09/2018    |

| Determination          | Result | Units | Status |
|------------------------|--------|-------|--------|
| рН                     | 5.6    |       |        |
| Lime req (Arable)      | 5.4    | t/ha  |        |
| Lime req (Grass)       | 2.7    | t/ha  |        |
| Extractable Phosphorus | 3.24   | mg/l  | Low    |
| Extractable Potassium  | 106.0  | mg/l  | M(-)   |
| Extractable Magnesium  | 43.10  | mg/l  | Low    |
| Extractable Calcium    | 1300   | mg/l  |        |
| Extractable Sodium     | 22.10  | mg/l  |        |



- 2 cuts silage
  - P = L
  - K = M-
  - pH 5.6
- Slurry applied @ 2000gal/acre







### **Nutrient Plan**



| CLIENT:                           | W&S Agnew    | , Balwherri | eFarm       |             | DATE:                    |           | 04/10/2018    |               |                |
|-----------------------------------|--------------|-------------|-------------|-------------|--------------------------|-----------|---------------|---------------|----------------|
| Field Name:                       |              | 12          | Total Area: | 14.78       | Harvest                  | Year:     | 2019          |               |                |
| Last Soil Analysis Date:          | 27/09/2018   |             |             |             |                          |           |               |               |                |
| Ph                                | 5.6          | mg/l        |             |             |                          |           |               |               |                |
| Phosphate                         | L            | 3.24        |             | P20 Policy: | Build up                 | Run Down  | Maintenance   |               |                |
| Potash                            | M            | 106         |             |             |                          |           | Maintenance   |               |                |
| Magnesium                         | L            | 43.1        |             |             |                          |           |               |               |                |
| Calcium                           |              | 1300        |             |             |                          |           |               |               |                |
| Last Limed                        |              |             |             |             |                          |           |               |               |                |
| Last Year Crop 2018               | Grass Silage | ex3         |             |             |                          |           |               |               |                |
| This Year Crop 2019               | Grass Silage | ex2         |             |             |                          |           |               |               |                |
| RECOMMENDATION:                   |              |             |             |             |                          |           |               |               |                |
|                                   |              |             |             |             | Application<br>(kg/ha.or |           | Fertiliser    | Total Product |                |
|                                   |              | Amount (l   |             |             | acre                     | 1         | Grade         | Required kg   | Applied & Date |
|                                   |              |             | K           | SO3         | m3/ha                    | gal/ac    |               |               |                |
| Nutrient Required                 | 210          | 95          | 220         | 50-80       |                          |           |               |               |                |
| Nutrient Supplied from<br>Manures | 10           | 8           | 46          |             | 17                       | 1600      | 5.4.23        |               |                |
| Fertiliser Applications:          |              |             |             |             |                          |           |               |               |                |
| 1st Application                   |              |             |             |             |                          |           |               | 0             |                |
| 1st Out                           | 114          | 20          | 64          |             |                          | (4cwt/ac) | 23.4.13+7 so3 | 7390          |                |
| 2nd Out                           | 85           | 15          | 48          | 26          | 370                      | (3cwt/ac) | 23.4.13+7 so3 | 5469          |                |
| Grazing Aftermath                 |              |             |             |             |                          |           |               | 0             |                |
| Total                             | 209          | 43          | 158         | 61          |                          |           |               |               |                |
| Total Nutrient Supplied           | -1           | -52         |             | -19         |                          |           |               |               |                |
| Additional Straights              |              | 46          |             |             | 100                      |           | 0.46.0        | 1478          |                |
|                                   | I            |             |             |             |                          |           |               |               |                |







#### **Nutrient Plans**



- Soil Sample
- Slurry/Dung Sample
- Take note of yield no of trailers & stock grazing
- Take note of what is actually applied!
- Use SAC/RB209 for recommendations
- Call the Strangaer Office!







# If You Only Remember 3 Things......



- Your soil is ALIVE don't squash it, drown it or starve it of Oxygen and food!
- Buying Lime is the best money you will spend
- Sampling soil, forage and animals will help you farm Smarter!







## **Thank You**









